Startseite Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice

  • Michihiro Mutoh , Naoko Niho und Keiji Wakabayashi
Veröffentlicht/Copyright: 11. April 2006
Biological Chemistry
Aus der Zeitschrift Band 387 Heft 4

Abstract

Epidemiologically, a high-fat diet is associated with the risk of colon cancer. In addition, serum levels of triglycerides (TGs) and cholesterol have been demonstrated to be positively associated with colon carcinogenesis. We recently found that an age-dependent hyperlipidemic state (high serum TG levels) exists in Apc-deficient mice, an animal model for human familial adenomatous polyposis. The mRNA levels of lipoprotein lipase (LPL), which catalyzes TG hydrolysis, were shown to be downregulated in the liver and intestines of mice. Moreover, treatment with a peroxisome proliferator-activated receptor (PPAR) α agonist, bezafibrate, or a PPARγ agonist, pioglitazone, suppressed both hyperlipidemia and intestinal polyp formation in the mice, with induction of LPL mRNA. PPARα and PPARγ agonists are reported to exert anti-proliferative and pro-apoptotic effects in cancer cells. One compound that also increases LPL expression levels but does not possess PPAR agnostic activity is NO-1886. When given at 400 or 800 ppm in the diet, it suppresses both hyperlipidemia and intestinal polyp formation in Apc-deficient mice, with elevation of LPL mRNA. In conclusion, a decrease in serum lipid levels by increasing LPL activity may contribute to a reduction in intestinal polyp formation with Apc deficiency. PPARα and PPARγ agonists, as well as NO-1886, could be useful as chemopreventive agents for colon cancer.

:

Corresponding author

References

Agarwal, B., Rao, C.V., Bhendwal, S., Ramey, W.R., Shirin, H., Reddy, B.S., and Holt, P.R. (1999). Lovastatin augments sulindac-induced apoptosis in colon cancer cells and potentiates chemopreventive effects of sulindac. Gastroenterology117, 838–847.10.1016/S0016-5085(99)70342-2Suche in Google Scholar

Bruce, W.R., Wolever, T.M., and Giacca, A. (2000). Mechanisms linking diet and colorectal cancer: the possible role of insulin resistance. Nutr. Cancer37, 19–26.10.1207/S15327914NC3701_2Suche in Google Scholar

Corpet, D.E. and Pierre, F. (2003). Point: from animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system. Cancer Epidemiol. Biomarkers Prev.12, 391–400.Suche in Google Scholar

Doi, M., Kondo, Y., and Tsutsumi, K. (2003). Lipoprotein lipase activator NO-1886 (ibrolipim) accelerates the mRNA expression of fatty acid oxidation-related enzymes in rat liver. Metabolism52, 1547–1550.10.1016/j.metabol.2003.07.007Suche in Google Scholar

DuBois, R.N., Radhika, A., Reddy, B.S., and Entingh, A.J. (1996). Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroenterology110, 1259–1262.10.1053/gast.1996.v110.pm8613017Suche in Google Scholar

Fodde, R., Edelmann, W., Yang, K., van Leeuwen, C., Carlson, C., Renault, B., Breukel, C., Alt, E., Lipkin, M., Khan, P.M., and Kucherlapati, R. (1994). A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc. Natl. Acad. Sci. USA91, 8969–8973.10.1073/pnas.91.19.8969Suche in Google Scholar

Gehrisch, S. (1999). Common mutations of the lipoprotein lipase gene and their clinical significance. Curr. Atheroscler. Rep.1, 70–78.10.1007/s11883-999-0052-4Suche in Google Scholar

Goldberg, I.J. (1996). Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res.37, 693–707.10.1016/S0022-2275(20)37569-6Suche in Google Scholar

Jackson, L., Wahli, W., Michalik, L., Watson, S.A., Morris, T., Anderton, K., Bell, D.R., Smith, J.A., Hawkey, C.J., and Bennett, A.J. (2003). Potential role for peroxisome proliferator activated receptor (PPAR) in preventing colon cancer. Gut52, 1317–1322.10.1136/gut.52.9.1317Suche in Google Scholar PubMed PubMed Central

Jarvinen, R., Knekt, P., Hakulinen, T., Rissanen, H., and Heliovaara, M. (2001). Dietary fat, cholesterol and colorectal cancer in a prospective study. Br. J. Cancer85, 357–361.10.1054/bjoc.2001.1906Suche in Google Scholar PubMed PubMed Central

Lefebvre, A.M., Chen, I., Desreumaux, P., Najib, J., Fruchart, J.C., Geboes, K., Briggs, M., Heyman, R., and Auwerx, J. (1998). Activation of the peroxisome proliferator-activated receptor promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nat. Med.4, 1053–1057.10.1038/2036Suche in Google Scholar PubMed

Le Marchand, L., Wilkens, L.R., Kolonel, L.N., Hankin, J.H., and Lyu, L.C. (1997). Associations of sedentary lifestyle, obesity, smoking, alcohol use, and diabetes with the risk of colorectal cancer. Cancer Res.57, 4787–4794.Suche in Google Scholar

McKeown-Eyssen, G.E. (1994). Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk? Cancer Epidemiol. Biomark. Prev.3, 687–695.Suche in Google Scholar

Mead, J.R., Irvine, S.A., and Ramji, D.P. (2002). Lipoprotein lipase: structure, function, regulation, and role in disease. J. Mol. Med.80, 753–769.10.1007/s00109-002-0384-9Suche in Google Scholar PubMed

Moser, A.R., Pitot, H.C., and Dove, W.F. (1990). A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science247, 322–324.10.1126/science.2296722Suche in Google Scholar PubMed

Niho, N., Takahashi, M., Kitamura, T., Shoji, Y., Itoh, M., Noda, T., Sugimura, T., and Wakabayashi, K. (2003a). Concomitant suppression of hyperlipidemia and intestinal polyp formation in Apc-deficient mice by peroxisome proliferator-activated receptor ligands. Cancer Res.63, 6090–6095.Suche in Google Scholar

Niho, N., Takahashi, M., Shoji, Y., Takeuchi, Y., Matsubara, S., Sugimura, T., and Wakabayashi, K. (2003b). Dose-dependent suppression of hyperlipidemia and intestinal polyp formation in Min mice by pioglitazone, a PPARγ ligand. Cancer Sci.94, 960–964.10.1111/j.1349-7006.2003.tb01385.xSuche in Google Scholar PubMed

Niho, N., Mutoh, M., Takahashi, M., Tsutsumi, K., Sugimura, T., and Wakabayashi, K. (2005). Concurrent suppression of hyperlipidemia and intestinal polyp formation by NO-1886, increasing lipoprotein lipase activity in Min mice. Proc. Natl. Acad. Sci. USA102, 2970–2974.10.1073/pnas.0500153102Suche in Google Scholar PubMed PubMed Central

Oshima, M., Oshima, H., Kitagawa, K., Kobayashi, M., Itakura, C., and Taketo, M. (1995). Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc. Natl. Acad. Sci. USA92, 4482–4486.10.1073/pnas.92.10.4482Suche in Google Scholar PubMed PubMed Central

Quesada, C.F., Kimata, H., Mori, M., Nishimura, M., Tsuneyoshi, T., and Baba, S. (1998). Piroxicam and acarbose as chemopreventive agents for spontaneous intestinal adenomas in APC gene 1309 knockout mice. Jpn. J. Cancer Res.89, 392–396.10.1111/j.1349-7006.1998.tb00576.xSuche in Google Scholar PubMed PubMed Central

Rosen, E.D. and Spiegelman, B.M. (2001). PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. J. Biol. Chem.276, 37731–37734.10.1074/jbc.R100034200Suche in Google Scholar PubMed

Ross, S.E., Hemati, N., Longo, K.A., Bennett, C.N., Lucas, P.C., Erickson, R.L., and MacDougald, O.A. (2000). Inhibition of adipogenesis by Wnt signaling. Science289, 950–953.10.1126/science.289.5481.950Suche in Google Scholar PubMed

Sakamoto, J., Kimura, H., Moriyama, S., Odaka, H., Momose, Y., Sugiyama, Y., and Sawada, H. (2000). Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem. Biophys. Res. Commun.278, 704–711.10.1006/bbrc.2000.3868Suche in Google Scholar PubMed

Sano, H., Kawahito, Y., Wilder, R.L., Hashiramoto, A., Mukai, S., Asai, K., Kimura, S., Kato, H., Kondo, M., and Hla, T. (1995). Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res.55, 3785–3789.Suche in Google Scholar

Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A.M., Heyman, R.A., Briggs, M., Deeb, S., Staels, B., and Auwerx, J. (1996a). PPAR and PPAR activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J.15, 5336–5348.10.1002/j.1460-2075.1996.tb00918.xSuche in Google Scholar

Schoonjans, K., Staels, B., and Auwerx, J. (1996b). The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta1302, 93–109.10.1016/0005-2760(96)00066-5Suche in Google Scholar

Semenkovich, C.F., Chen, S.H., Wims, M., Luo, C.C., Li, W.H., and Chan, L. (1989). Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation, and evolution. J. Lipid Res.30, 423–431.10.1016/S0022-2275(20)38369-3Suche in Google Scholar

Tanaka, T., Kohno, H., Yoshitani, S., Takashima, S., Okumura, A., Murakami, A., and Hosokawa, M. (2001). Ligands for peroxisome proliferator-activated receptors inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Res.61, 2424–2428.Suche in Google Scholar

Tettey, J.N., Maggs, J.L., Rapeport, W.G., Pirmohamed, M., and Park, B.K. (2001). Enzyme-induction dependent bioactivation of troglitazone and troglitazone quinone in vivo. Chem. Res. Toxicol.14, 965–974.10.1021/tx0001981Suche in Google Scholar

Tsujii, M., Kawano, S., Tsuji, S., Sawaoka, H., Hori, M., and DuBois, R.N. (1998). Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell93, 705–716.10.1016/S0092-8674(00)81433-6Suche in Google Scholar

Tsutsumi, K., Inoue, Y., Shima, A., Iwasaki, K., Kawamura, M., and Murase, T. (1993). The novel compound NO-1886 increases lipoprotein lipase activity with resulting elevation of high density lipoprotein cholesterol, and long-term administration inhibits atherogenesis in the coronary arteries of rats with experimental atherosclerosis. J. Clin. Invest.92, 411–417.10.1172/JCI116582Suche in Google Scholar

Williams, C.S., Luongo, C., Radhika, A., Zhang, T., Lamps, L.W., Nanney, L.B., Beauchamp, R.D., and DuBois, R.N. (1996). Elevated cyclooxygenase-2 levels in Min mouse adenomas. Gastroenterology111, 1134–1140.10.1016/S0016-5085(96)70083-5Suche in Google Scholar

Published Online: 2006-04-11
Published in Print: 2006-04-01

©2006 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Highlight: chronic oxidative stress and cancer
  2. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress
  3. Does Helicobacter pylori cause gastric cancer via oxidative stress?
  4. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis
  5. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids
  6. Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice
  7. Cancer-preventive anti-oxidants that attenuate free radical generation by inflammatory cells
  8. Evidence for attenuated cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine removal in cancer patients
  9. The roles of ATP in the dynamics of the actin filaments of the cytoskeleton
  10. Chiral distinction between the enantiomers of bicyclic alcohols by UDP-glucuronosyltransferases 2B7 and 2B17
  11. A structural model of 20S immunoproteasomes: effect of LMP2 codon 60 polymorphism on expression, activity, intracellular localisation and insight into the regulatory mechanisms
  12. Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function
  13. Comparative proteomic analysis of neoplastic and non-neoplastic germ cell tissue
  14. BID, an interaction partner of protein kinase CK2α
  15. Monomeric and dimeric GDF-5 show equal type I receptor binding and oligomerization capability and have the same biological activity
  16. Novel ketomethylene inhibitors of angiotensin I-converting enzyme (ACE): inhibition and molecular modelling
  17. Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain
  18. A fluorescence assay for rapid detection of ligand binding affinity to HIV-1 gp41
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.051/html
Button zum nach oben scrollen