Startseite Anti-inflammatory effects of kinins via microglia in the central nervous system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Anti-inflammatory effects of kinins via microglia in the central nervous system

  • Mami Noda , Helmut Kettenmann und Keiji Wada
Veröffentlicht/Copyright: 9. Februar 2006
Biological Chemistry
Aus der Zeitschrift Band 387 Heft 2

Abstract

Kinins are important biologically active peptides that are up-regulated after lesions in both the peripheral and central (CNS) nervous systems. Microglia are immune cells in the CNS and play an important role in the defense of the neuronal parenchyma. In cultured murine microglia, bradykinin (BK) induces mobilization of intracellular Ca2+, microglial migration, and increases the release of nitric oxide and prostaglandin E2. On the other hand, BK attenuates lipopolysaccharide-activated TNF-α and IL-1β release. These results suggest that BK functions as a signal in brain trauma and may have an anti-inflammatory role in the CNS.

:

Corresponding author

References

Abbott, N.J. (2000). Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol. Neurobiol.20, 131–147.10.1023/A:1007074420772Suche in Google Scholar

Batenburg, W.W., Tom, B., Schuijt, M.P., and Danser, A.H. (2005). Angiotensin II type 2 receptor-mediated vasodilation. Focus on bradykinin, NO and endothelium-derived hyperpolarizing factor(s). Vascul. Pharmacol.42, 109–118.Suche in Google Scholar

Bernstein, M., Lyons, S.A., Moller, T., and Kettenmann, H. (1996). Receptor-mediated calcium signalling in glial cells from mouse corpus callosum slices. J. Neurosci. Res.46, 152–163.10.1002/(SICI)1097-4547(19961015)46:2<152::AID-JNR3>3.0.CO;2-GSuche in Google Scholar

Burch, R.M. and Kniss, D.A. (1988). Modulation of receptor-mediated signal transduction by diacylglycerol mimetics in astrocytes. Cell Mol. Neurobiol.8, 251–257.10.1007/BF00711251Suche in Google Scholar

Caggiano, A.O. and Kraig, R.P. (1999). Prostaglandin E receptor subtypes in cultured rat microglia and their role in reducing lipopolysaccharide-induced interleukin-1β production. J. Neurochem.72, 565–575.10.1046/j.1471-4159.1999.0720565.xSuche in Google Scholar

Chandy, K.G., Wulff, H., Beeton, C., Pennington, M., Gutman, G., and Cahalan, M.D. (2004). K+ channels as targets for specific immunomodulation. Trends. Pharmacol. Sci.25, 280–289.10.1016/j.tips.2004.03.010Suche in Google Scholar

Chao, J., Chao, L., Swain, C.C., Tsai, J., and Margolius, H.S. (1987). Tissue kallikrein in rat brain and pituitary: regional distribution and estrogen induction in the anterior pituitary. Endocrinology120, 475–482.10.1210/endo-120-2-475Suche in Google Scholar

Davalos, D., Grutzendler, J., Yang, G., Kim, J.V., Zuo, Y., Jung, S., Littman, D.R., Dustin, M.L., and Gan, W.B. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci.8, 752–758.10.1038/nn1472Suche in Google Scholar

Delmas, P., Wananerbercq, N., Abogadie, F.C., Mistry, M., and Brown, D.A. (2002). Signaling microdomains define the specificity of receptor-mediated InsP3 pathways in neurons. Neuron14, 209–220.10.1016/S0896-6273(02)00641-4Suche in Google Scholar

Eder, C. (2005). Regulation of microglial behavior by ion channel activity. J. Neurosci. Res.81, 314–321.10.1002/jnr.20476Suche in Google Scholar

Fanger, C.M., Rauer, H., Neben, A.L., Miller, M.J., Rauer, H., Wulff, H., Rosa, J.C., Ganellin, C.R., Chandy, K.G., and Cahalan, M.D. (2001). Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J. Biol. Chem.276, 12249–12256.10.1074/jbc.M011342200Suche in Google Scholar

Frieden, M., Sollini, M., and Beny, J. (1999). Substance P and bradykinin activate different types of KCa currents to hyperpolarize cultured porcine coronary artery endothelial cells. J. Physiol.519, 361–371.10.1111/j.1469-7793.1999.0361m.xSuche in Google Scholar

Gimpl, G., Walz, W., Ohlemeyer, C., and Kettenmann, H. (1992). Bradykinin receptors in cultured astrocytes from neonatal rat brain are linked to physiological responses. Neurosci. Lett.144, 139–142.10.1016/0304-3940(92)90735-PSuche in Google Scholar

Hall, J.M. (1992). Bradykinin receptors: pharmacological properties and biological roles. Pharmacol. Ther.56, 131–190.10.1016/0163-7258(92)90016-SSuche in Google Scholar

Hallberg, M. and Nyberg, F. (2003). Neuropeptide conversion to bioactive fragments – an important pathway in neuromodulation. Curr. Protein Pept. Sci.4, 31–44.10.2174/1389203033380313Suche in Google Scholar

Hanani, M. (2005). Satellite glial cells in sensory ganglia: from form to function. Brain Res. Brain Res. Rev.48, 457–476.10.1016/j.brainresrev.2004.09.001Suche in Google Scholar

He, M., Howe, D.G., and McCarthy, K.D. (1996). Oligodendroglial signal transduction systems are regulated by neuronal contact. J. Neurochem.67, 1491–1499.10.1046/j.1471-4159.1996.67041491.xSuche in Google Scholar

Heitsch, H. (2000). Bradykinin B2 receptor as a potential therapeutic target. Drug News Perspect.13, 213–225.Suche in Google Scholar

Higashida, H. and Brown, D.A. (1988). Ca2+-dependent K+ channels in neuroblastoma hybrid cells activated by intracellular inositol trisphosphate and extracellular bradykinin. FEBS Lett.238, 395–400.10.1016/0014-5793(88)80519-2Suche in Google Scholar

Honda, S., Sasaki, Y., Ohsawa, K., Imai, Y., Nakamura, Y., Inoue, K., and Kohsaka, S. (2001). Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J. Neurosci.21, 1975–1982.10.1523/JNEUROSCI.21-06-01975.2001Suche in Google Scholar

Hosli, L., Hosli, E., Kaeser, H., and Lefkovits, M. (1992). Colocalization of receptors for vasoactive peptides on astrocytes of cultured rat spinal cord and brain stem: electrophysiological effects of atrial and brain natriuretic peptide, neuropeptide Y and bradykinin. Neurosci. Lett.148, 114–116.10.1016/0304-3940(92)90817-QSuche in Google Scholar

Ifuku, M., Wang, B., and Noda, M. (2005). Activation of Ca2+-dependent K+ channels is essential for bradykinin-induced microglial migration. In: VII European Meeting on Glial Cell Function in Health and Disease, 19–25 May 2005, Amsterdam, Netherlands (Bologna, Italy: Medimond S.r.l.), pp. 97–101.Suche in Google Scholar

Kaeser, F., Luthy, C., Herschkowitz, N., and Oetliker, O. (1988). The effect of temporary hypoxia on prostaglandin synthesis in mouse brain cell cultures during development. Prostaglandins Leukot. Essent. Fatty Acids32, 75–81.10.1016/0952-3278(88)90099-3Suche in Google Scholar

Kim, E.J., Kwon, K.J., Park, J.Y., Lee, S.H., Moon, C.H., and Baik, E.J. (2002). Neuroprotective effects of prostaglandin E2 or cAMP against microglial and neuronal free radical mediated toxicity associated with inflammation. J. Neurosci. Res.70, 97–107.10.1002/jnr.10373Suche in Google Scholar

Kim, S.J. and Kim, J. (1998). Relation of exocytosis and Ca2+-activated K+ current during Ca2+ release from intracellular stores in individual rat chromaffin cells. Brain Res.799, 197–206.10.1016/S0006-8993(98)00413-2Suche in Google Scholar

Kim, S.U. and de Vellis, J. (2005). Microglia in health and disease. J. Neurosci. Res.81, 302–313.10.1002/jnr.20562Suche in Google Scholar

Kreutzberg, G.W. (1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci.19, 312–318.10.1016/0166-2236(96)10049-7Suche in Google Scholar

Lehnardt, S., Massillon, L., Follett, P., Jensen, F.E., Ratan, R., Rosenberg, P.A., Volpe, J.J., and Vartanian, T. (2003). Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl. Acad. Sci. USA100, 8514–8519.10.1073/pnas.1432609100Suche in Google Scholar

Liebmann, C. (2001). Bradykinin signalling to MAP kinase: cell-specific connections versus principle mitogenic pathways. Biol. Chem.382, 49–55.10.1515/BC.2001.008Suche in Google Scholar

Liebmann, C., Offermanns, S., Spicher, K., Hinsch, K.D., Schnittler, M., Morgat, J.L., Reissmann, S., Schultz, G., and Rosenthal, W. (1990). A high-affinity bradykinin receptor in membranes from rat myometrium is coupled to pertussis toxin-sensitive G proteins of the Gi family. Biochem. Biophys. Res. Commun.167, 910–917.10.1016/0006-291X(90)90610-YSuche in Google Scholar

Lin, W.W. and Chuang, D.M. (1992). Regulation of bradykinin-induced phosphoinositide turnover in cultured cerebellar astrocytes: possible role of protein kinase C. Neurochem. Int.21, 573–579.10.1016/0197-0186(92)90090-ESuche in Google Scholar

Miura, H., Liu, Y., and Gutterman, D.D. (1999). Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels. Circulation99, 3132–3138.10.1161/01.CIR.99.24.3132Suche in Google Scholar

Nimmerjahn, A., Kirchhoff, F., and Helmchen, F.R. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science308, 1314–1318.10.1126/science.1110647Suche in Google Scholar PubMed

Noda, M., Kariura, Y., Amano, T., Manago, Y., Nishikawa, K., Aoki, S., and Wada, K. (2003). Expression and function of bradykinin receptors in microglia. Life Sci.72, 1573–1581.10.1016/S0024-3205(02)02449-9Suche in Google Scholar

Noda, M., Kariura, Y., Amano, T., Manago, Y., Nishikawa, K., Aoki, S., and Wada, K. (2004a). Kinin receptors in cultured rat microglia. Neurochem. Int.45, 437–442.10.1016/j.neuint.2003.07.007Suche in Google Scholar

Noda, M., Kariura, Y., Kosai, Y., Pannasch, U., Wang, L., Kettenmann, H., Nishikawa, K., Okada, S., Aoki, S., and Wada, K. (2004b). Inflammation in the CNS: the role of bradykinin in glial cells. J. Neurochem.88 (Suppl. 1), 11.Suche in Google Scholar

Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S., and Haydon, P.G. (1994). Glutamate-mediated astrocyte-neuron signalling. Nature369, 744–747.10.1038/369744a0Suche in Google Scholar

Perry, V.H., Andersson, P.B., and Gordon, S. (1993). Macrophages and inflammation in the central nervous system. Trends Neurosci.16, 268–273.10.1016/0166-2236(93)90180-TSuche in Google Scholar

Raidoo, D.M. and Bhoola, K.D. (1998). Pathophysiology of the kallikrein-kinin system in mammalian nervous tissue. Pharmacol. Ther.79, 105–127.10.1016/S0163-7258(98)00011-4Suche in Google Scholar

Ritchie, T., Cole, R., Kim, H.S., de Vellis, J., and Noble, E.P. (1987). Inositol phospholipid hydrolysis in cultured astrocytes and oligodendrocytes. Life Sci.41, 31–39.10.1016/0024-3205(87)90553-4Suche in Google Scholar

Schilling, T., Stock, C., Schwab, A., and Eder, C. (2004). Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur. J. Neurosci.19, 1469–1474.10.1111/j.1460-9568.2004.03265.xSuche in Google Scholar PubMed

Schwaninger, M., Sallmann, S., Petersen, N., Schneider, A., Prinz, S., Libermann, T.A., and Spranger, M. (1999). Bradykinin induces interleukin-6 expression in astrocytes through activation of nuclear factor-κB. J. Neurochem.73, 1461–1466.10.1046/j.1471-4159.1999.0731461.xSuche in Google Scholar PubMed

Scicli, A.G., Forbes, G., Nolly, H., Dujovny, M., and Carretero, O.A. (1984). Kallikrein-kinins in the central nervous system. Clin. Exp. Hypertens. A6, 1731–1738.10.3109/10641968409046068Suche in Google Scholar PubMed

Shie, F.S., Montine, K.S., Breyer, R.M., and Montine, T.J. (2005). Microglial EP2 as a new target to increase amyloid beta phagocytosis and decrease amyloid β-induced damage to neurons. Brain Pathol.15, 134–138.Suche in Google Scholar

Simpson, P.B., Mehotra, S., Lange, G.D., and Russell, J.T. (1997). High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J. Biol. Chem.272, 22654–22661.10.1074/jbc.272.36.22654Suche in Google Scholar PubMed

Stephens, G.J., Marriott, D.R., Djamgoz, M.B., and Wilkin, G.P. (1993a). Electrophysiological and biochemical evidence for bradykinin receptors on cultured rat cortical oligodendrocytes. Neurosci. Lett.153, 223–226.10.1016/0304-3940(93)90327-HSuche in Google Scholar

Stephens, G.J., Cholewinski, A.J., Wilkin, G.P., and Djamgoz, M.B. (1993b). Calcium-mobilizing and electrophysiological effects of bradykinin on cortical astrocyte subtypes in culture. Glia9, 269–279.10.1002/glia.440090405Suche in Google Scholar

Su, Y., Ganea, D., Peng, X., and Jonakait, G.M. (2003). Galanin down-regulates microglial tumor necrosis factor-α production by a post-transcriptional mechanism. J. Neuroimmunol.134, 52–60.10.1016/S0165-5728(02)00397-1Suche in Google Scholar

Tzeng, S.F., Hsiao, H.Y., and Mak, O.T. (2005). Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr. Drug Targets Inflamm. Allergy4, 335–340.10.2174/1568010054022051Suche in Google Scholar

Ubink, R., Calza, L., and Hokfelt, T. (2003). ‘Neuro’-peptides in glia: focus on NPY and galanin. Trends Neurosci.26, 604–609.10.1016/j.tins.2003.09.003Suche in Google Scholar

Walker, K., Perkins, M., and Dray, A. (1995). Kinins and kinin receptors in the nervous system. Neurochem. Int.26, 1–16.10.1016/0197-0186(94)00114-ASuche in Google Scholar

Wang, H., Kohno, T., Amaya, F., Brenner, G.J., Ito, N., Allchorne, A., Ji, R.R., and Woolf, C.J. (2005). Bradykinin produces pain hypersensitivity by potentiating spinal cord glutamatergic synaptic transmission. J. Neurosci.25, 7986–7992.10.1523/JNEUROSCI.2393-05.2005Suche in Google Scholar

Webb, J.G., Shearer, T.W., Yates, P.W., Mukhin, Y.V., and Crosson, C.E. (2003). Bradykinin enhancement of PGE2 signalling in bovine trabecular meshwork cells. Exp. Eye. Res.76, 283–289.10.1016/S0014-4835(02)00313-5Suche in Google Scholar

Welsh, C., Dubyak, G., and Douglas, J.G. (1988). Relationship between phospholipase C activation and prostaglandin E2 and cyclic adenosine monophosphate production in rabbit tubular epithelial cells. Effects of angiotensin, bradykinin, and arginine vasopressin. J. Clin. Invest.81, 710–719.Suche in Google Scholar

Yanaga, F., Hirata, M., and Koga, T. (1991). Evidence for coupling of bradykinin receptors to a guanine-nucleotide binding protein to stimulate arachidonate liberation in the osteoblast-like cell line, MC3T3-E1. Biochim. Biophys. Acta1094, 139–146.Suche in Google Scholar

Published Online: 2006-02-09
Published in Print: 2006-02-01

©2006 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Exploring the future of local vascular and inflammatory mediators
  2. Genetically altered animal models in the kallikrein-kinin system
  3. The kinin system mediates hyperalgesia through the inducible bradykinin B1 receptor subtype: evidence in various experimental animal models of type 1 and type 2 diabetic neuropathy
  4. Cross-talk of the renin-angiotensin and kallikrein-kinin systems
  5. Which endothelium-derived factors are really important in humans?
  6. Kinin- and angiotensin-converting enzyme (ACE) inhibitor-mediated nitric oxide production in endothelial cells
  7. Anti-inflammatory effects of kinins via microglia in the central nervous system
  8. Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma
  9. Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins
  10. Dual antagonists of the bradykinin B1 and B2 receptors based on a postulated common pharmacophore from existing non-peptide antagonists
  11. Generation and characterization of a humanized bradykinin B1 receptor mouse
  12. The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP)
  13. Molecular identification and pharmacological profile of the bovine kinin B1 receptor
  14. Interplay of human tissue kallikrein 4 (hK4) with the plasminogen activation system: hK4 regulates the structure and functions of the urokinase-type plasminogen activator receptor (uPAR)
  15. Cathepsin B localizes to plasma membrane caveolae of differentiating myoblasts and is secreted in an active form at physiological pH
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.022/html
Button zum nach oben scrollen