Startseite The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP)

  • Norihito Moniwa , Jun Agata , Makoto Hagiwara , Nobuyuki Ura und Kazuaki Shimamoto
Veröffentlicht/Copyright: 9. Februar 2006
Biological Chemistry
Aus der Zeitschrift Band 387 Heft 2

Abstract

An angiotensin-converting enzyme inhibitor (ACE-I) reduces cardiac remodeling and a bradykinin B2 receptor (B2R) antagonist partially abolishes this ACE-I effect. However, bradykinin has two different types of receptor, the B1 receptor (B1R) and B2R. Although B1R is induced under several pathological conditions, including hypertension, the role of cardiac B1R in hypertension is not clear. We therefore investigated the role of cardiac B1R in stroke-prone spontaneously hypertensive rats (SHR-SP) and Wistar-Kyoto (WKY) rats. The B1R mRNA expression level in the heart was significantly higher in SHR-SP than in WKY rats. Chronic infusion of a B1R antagonist for 4 weeks significantly elevated blood pressure and left-ventricular weight of SHR-SP. Morphological analysis indicated that cardiomyocyte size and cardiac fibrosis significantly increased after administration of the B1R antagonist. The phosphorylation of mitogen-activated protein (MAP) kinases, including ERK, p38, and JNK, was significantly increased in the hearts of SHR-SP rats receiving the B1R antagonist. The TGF-β1 expression level was significantly increased in SHR-SP rats treated with the B1R antagonist compared to that in WKY rats. The B1R antagonist significantly increased phosphorylation of Thr495 in endothelial nitric oxide synthase (eNOS), which is an inhibitory site of eNOS. These results suggest that the role of B1R in the heart may be attenuation of cardiac remodeling via inhibition of the expression of MAP kinases and TGF-β1 through an increase in eNOS activity in a hypertensive condition.

:

Corresponding author

References

Agata, J., Miao, R.Q., Yayama, K., Chao, L., and Chao, J. (2000). Bradykinin B1 receptor mediates inhibition of neointima formation in rat artery after balloon angioplasty. Hypertension36, 364–370.10.1161/01.HYP.36.3.364Suche in Google Scholar

Bhoola, K.D., Figueroa, C.D., and Worthy, K. (1992). Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol. Rev.44, 1–80.Suche in Google Scholar

Bledsoe, G., Chao, L., and Chao J. (2003). Kallikrein gene delivery attenuates cardiac remodeling and promotes neovascularization in spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol.285, H1479–H1488.10.1152/ajpheart.01129.2002Suche in Google Scholar

Border, W.A. and Noble, N.A. (1994). Transforming growth factor β in tissue fibrosis. N. Engl. J. Med.331, 1286–1292.Suche in Google Scholar

Brooks, W.W. and Conrad, C.H. (2000). Myocardial fibrosis in transforming growth factor heterozygous mice. J. Mol. Cell. Cardiol.32, 187–195.10.1006/jmcc.1999.1065Suche in Google Scholar

Cai, H. and Harrison, D.G. (2000). Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res.87, 840–844.10.1161/01.RES.87.10.840Suche in Google Scholar

Campos, M.M., Souza, G.E., and Calixto, J.B. (1996). Upregulation of B1 receptor mediating des-Arg9-BK-induced rat paw edema by systemic treatment with bacterial endotoxin. Br. J. Pharmacol.117, 793–798.10.1111/j.1476-5381.1996.tb15262.xSuche in Google Scholar

Casscells, W., Bazoberry, F., Speir, E., Thompson, N., Flanders, K., Kondaiah, P., Ferrans, V.J., Epstein, S.E., and Sporn, M. (1990). Transforming growth factor-β1 in normal heart and in myocardial infarction. Ann. N.Y. Acad. Sci.593, 148–160.10.1111/j.1749-6632.1990.tb16107.xSuche in Google Scholar

Chao, J., Zhang, J.J., Lin, K.F., and Chao, L. (1998). Human kallikrein gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in Dahl salt-sensitive rats. Hum. Gene Ther.9, 21–31.10.1089/hum.1998.9.1-21Suche in Google Scholar

Chen, Z.P., Mitchelhill, K.I., Michell, B.J., Stapleton, D., Rodriguez-Crespo, I., Witters, L.A., Power, D.A., Ortiz de Montellano, P.R., and Kemp, B.E. (1999). AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett.443, 285–289.10.1016/S0014-5793(98)01705-0Suche in Google Scholar

Duguay, D., Der Sarkissian, S., Kouz, R., Ongali, B., Couture, R., and deBlois, D. (2004). Kinin B2 receptor is not involved in enalapril-induced apoptosis and regression of hypertrophy in spontaneously hypertensive rat aorta: possible role of B1 receptor. Br. J. Pharmacol.141, 728–736.10.1038/sj.bjp.0705642Suche in Google Scholar PubMed PubMed Central

Emanueli, C., Maestri, R., Corradi, D., Marchione, R., Minasi, A., Tozzi, M.G., Salis, M.B., Straino, S., Capogrossi, M.C., Olivetti, G., and Madeddu, P. (1999). Dilated and failing cardiomyopathy in bradykinin B2 receptor knockout mice. Circulation100, 2359–2365.10.1161/01.CIR.100.23.2359Suche in Google Scholar

Emanueli, C., Zacheo, A., Minasi, A., Chao, J., Chao, L., Salis, M.B., Stacca, T., Straino, S., Capogrossi, M.C., and Madeddu, P. (2000). Adenovirus-mediated human tissue kallikrein gene delivery induces angiogenesis in normoperfused skeletal muscle. Arterioscler. Thromb. Vasc. Biol.20, 2379–2385.10.1161/01.ATV.20.11.2379Suche in Google Scholar

Emanueli, C., Minasi, A., Zacheo, A., Chao, J., Chao, L., Salis, M.B., Straino, S., Tozzi, M.G., Smith, R., Gaspa, L., et al. (2001a). Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Circulation103, 125–132.10.1161/01.CIR.103.1.125Suche in Google Scholar PubMed

Emanueli, C., Salis, M.B., Stacca, T., Gaspa, L., Chao, J., Chao, L., Piana, A., and Madeddu, P. (2001b). Rescue of impaired angiogenesis in spontaneously hypertensive rats by intramuscular human tissue kallikrein gene transfer. Hypertension38, 136–141.10.1161/01.HYP.38.1.136Suche in Google Scholar PubMed

Furuhashi, M., Ura, N., Murakami, H., Hyakukoku, M., Yamaguchi, K., Higashiura, K., and Shimamoto, K. (2002). Fenofibrate improves insulin sensitivity in connection with intramuscular lipid content, muscle fatty acid-binding protein, and β-oxidation in skeletal muscle. J. Endocrinol.174, 321–329.10.1677/joe.0.1740321Suche in Google Scholar PubMed

Hagiwara, M., Murakami, H., Ura, N., Agata, J., Yoshida, H., Higashiura, K., and Shimamoto, K. (2004). Renal protective role of bradykinin B1 receptor in stroke-prone spontaneously hypertensive rats. Hypertens. Res.27, 399–408.10.1291/hypres.27.399Suche in Google Scholar PubMed

Izumi, Y., Kim, S., Murakami, T., Yamanaka, S., and Iwao, H. (1998). Cardiac mitogen-activated protein kinase activities are chronically increased in stroke-prone hypertensive rats. Hypertension31, 50–56.10.1161/01.HYP.31.1.50Suche in Google Scholar

Jin, L., Zhang, J.J., Chao, L., and Chao, J. (1997). Gene therapy in hypertension: adenovirus-mediated kallikrein gene delivery in hypertensive rats. Hum. Gene Ther.8, 1743–1761.10.1089/hum.1997.8.15-1753Suche in Google Scholar PubMed

Kuwahara, F., Kai, H., Tokuda, K., Kai, M., Takeshita, A., Ega-shira, K., and Imaizumi, T. (2002). Transforming growth factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation106, 130–135.10.1161/01.CIR.0000020689.12472.E0Suche in Google Scholar PubMed

Li, R.K., Li, G., Mickle, D.A., Weisel, R.D., Merante, F., Luss, H., Rao, V., Christakis, G.T., and Williams, W.G. (1997). Overexpression of transforming growth factor-β1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation96, 874–881.10.1161/01.CIR.96.3.874Suche in Google Scholar

Linz, W. and Scholkens, B.A. (1992). Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J. Cardiovasc. Pharmacol.20, S83–S90.Suche in Google Scholar

Linz, W., Wiemer, G., Gohlke, P., Unger, T., and Scholkens, B.A. (1995). Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharmacol. Rev.47, 25–50.Suche in Google Scholar

Madeddu, P., Emanueli, C., Maestri, R., Salis, M.B., Minasi, A., Capogrossi, M.C., and Olivetti, G. (2000). Angiotensin II type 1 receptor blockade prevents cardiac remodeling in bradykinin B2 receptor knockout mice. Hypertension35, 391–396.10.1161/01.HYP.35.1.391Suche in Google Scholar

Marceau, F., Hess J.F., and Bachvarov, D.R. (1998). The B1 receptors for kinins. Pharmacol. Rev.50, 357–386.Suche in Google Scholar

McEachern, A.E., Shelton, E.R., Bhakta, S., Obernolte, R., Bach, C., Zuppan, P., Fujisaki, J., Aldrich, R.W., and Jarnagin, K. (1991). Expression cloning of a rat B2 bradykinin receptor. Proc. Natl. Acad. Sci. USA88, 7724–7728.10.1073/pnas.88.17.7724Suche in Google Scholar

McLean, P.G., Perretti, M., and Ahluwalia, A. (1999). Inducible expression of the kinin B1 receptor in the endotoxemic heart: mechanisms of des-Arg9-bradykinin-induced coronary vasodilation. Br. J. Pharmacol.128, 275–282.10.1038/sj.bjp.0702743Suche in Google Scholar

McLean, P.G., Perretti, M., and Ahluwalia, A. (2000). Kinin B1 receptors and the cardiovascular system: regulation of expression and function. Cardiovasc. Res.48, 194–210.10.1016/S0008-6363(00)00184-XSuche in Google Scholar

Ni, A., Chai, K.X., Chao, L., and Chao, J. (1998). Molecular cloning and expression of rat bradykinin B1 receptor. Biochim. Biophys. Acta1442, 177–185.10.1016/S0167-4781(98)00163-8Suche in Google Scholar

Pauschinger, M., Knopf, D., Petschauer, S., Doerner, A., Poller, W., Schwimmbeck, P.L., Kuhl, U., and Schultheiss, H.P. (1999). Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation99, 2750–2756.10.1161/01.CIR.99.21.2750Suche in Google Scholar

Rosenkranz, S., Flesch, M., Amann, K., Haeuseler, C., Kilter, H., Seeland, U., Schluter, K.D., and Bohm, M. (2002). Alterations of β-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-β1. Am. J. Physiol. Heart Circ. Physiol.283, H1253–H1262.10.1152/ajpheart.00578.2001Suche in Google Scholar

Sanz-Rosa, D., Oubina, M.P., Cediel, E., de Las Heras, N., Vegazo, O., Jimenez, J., Lahera, V., and Cachofeiro, V. (2005). Effect of AT1 receptor antagonism on vascular and circulating inflammatory mediators in SHR: role of NF-κB/IκB system. Am. J. Physiol. Heart Circ. Physiol.288, H111–H115.10.1152/ajpheart.01061.2003Suche in Google Scholar

Silva, J.A. Jr., Araujo, R.C., Baltatu, O., Oliveira, S.M., Tschope, C., Fink, E., Hoffmann, S., Plehm, R., Chai, K.X., Chao, L., et al. (2000). Reduced cardiac hypertrophy and altered blood pressure control in transgenic rats with the human tissue kallikrein gene. FASEB J.14, 1858–1860.10.1096/fj.99-1010fjeSuche in Google Scholar

Spillmann, F., Altmann, C., Scheeler, M., Barbosa, M., Westermann, D., Schultheiss, H.P., Walther, T., and Tschope, C. (2002). Regulation of cardiac bradykinin B1-and B2-receptor mRNA in experimental ischemic, diabetic, and pressure-overload-induced cardiomyopathy. Int. Immunopharmacol.2, 1823–1832.10.1016/S1567-5769(02)00174-1Suche in Google Scholar

Swedberg, K., Held, P., Kjekshus, J., Rasmussen, K., Ryden, L., and Wedel, H. (1992). Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N. Engl. J. Med.327, 678–684.10.1056/NEJM199209033271002Suche in Google Scholar PubMed

The SAVE Investigators (1992). Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. N. Engl. J. Med. 327, 669–677.Suche in Google Scholar

Tschope, C., Gohlke, P., Zhu, Y.Z., Linz, W., Scholkens, B., and Unger, T. (1997). Antihypertensive and cardioprotective effects after angiotensin-converting enzyme inhibition: role of kinins. J. Card. Fail.3, 133–148.10.1016/S1071-9164(97)90047-6Suche in Google Scholar

Tschope, C., Heringer-Walther, S., Koch, M., Spillmann, F., Wendorf, M., Leitner, E., Schultheiss, H.P., and Walther, T. (2000). Upregulation of bradykinin B1-receptor expression after myocardial infarction. Br. J. Pharmacol.129, 1537–1538.10.1038/sj.bjp.0703239Suche in Google Scholar

Wollert, K.C. and Drexler, H. (1997). The kallikrein-kinin system in post-myocardial infarction cardiac remodeling. Am. J. Cardiol.80, 158A–161A.10.1016/S0002-9149(97)00473-6Suche in Google Scholar

Wunsch, M., Sharma, H.S., Markert, T., Bernotat-Danielowski, S., Schott, R.J., Kremer, P., Bleese, N., and Schaper, W. (1991). In situ localization of transforming growth factor β 1 in porcine heart: enhanced expression after chronic coronary artery occlusion. J. Mol. Cell. Cardiol.23, 1051–1062.10.1016/0022-2828(91)91640-DSuche in Google Scholar

Xu, J., Carretero, O.A., Sun, Y., Shesely, E.G., Rhaleb, N.E., Liu, Y.H., Liao, T.D., Yang, J.J., Bader, M., and Yang, X.P. (2005). Role of the B1 kinin receptor in the regulation of cardiac function and remodeling after myocardial infarction. Hypertension45, 747–753.10.1161/01.HYP.0000153322.04859.81Suche in Google Scholar PubMed PubMed Central

Yano, M., Kim, S., Ixumi, Y., Yamanaka, S., and Iwao, H. (1998). Differential activation of cardiac c-Jun amino-terminal kinase and extracellular signal-regulated kinase in angiotensin II-mediated hypertension. Circ. Res.83, 752–760.10.1161/01.RES.83.7.752Suche in Google Scholar

Yayama, K., Wang, C., Chao, L., and Chao, J. (1998). Kallikrein gene delivery attenuates hypertension and cardiac hypertrophy and enhances renal function in Goldblatt hypertensive rats. Hypertension31, 1104–1110.10.1161/01.HYP.31.5.1104Suche in Google Scholar PubMed

Ying, W.Z. and Sanders, P.W. (2003). The interrelationship between TGF-β1 and nitric oxide is altered in salt-sensitive hypertension. Am. J. Physiol. Renal Physiol.285, F902–F908.10.1152/ajprenal.00177.2003Suche in Google Scholar PubMed

Published Online: 2006-02-09
Published in Print: 2006-02-01

©2006 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Exploring the future of local vascular and inflammatory mediators
  2. Genetically altered animal models in the kallikrein-kinin system
  3. The kinin system mediates hyperalgesia through the inducible bradykinin B1 receptor subtype: evidence in various experimental animal models of type 1 and type 2 diabetic neuropathy
  4. Cross-talk of the renin-angiotensin and kallikrein-kinin systems
  5. Which endothelium-derived factors are really important in humans?
  6. Kinin- and angiotensin-converting enzyme (ACE) inhibitor-mediated nitric oxide production in endothelial cells
  7. Anti-inflammatory effects of kinins via microglia in the central nervous system
  8. Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma
  9. Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins
  10. Dual antagonists of the bradykinin B1 and B2 receptors based on a postulated common pharmacophore from existing non-peptide antagonists
  11. Generation and characterization of a humanized bradykinin B1 receptor mouse
  12. The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP)
  13. Molecular identification and pharmacological profile of the bovine kinin B1 receptor
  14. Interplay of human tissue kallikrein 4 (hK4) with the plasminogen activation system: hK4 regulates the structure and functions of the urokinase-type plasminogen activator receptor (uPAR)
  15. Cathepsin B localizes to plasma membrane caveolae of differentiating myoblasts and is secreted in an active form at physiological pH
Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.027/html
Button zum nach oben scrollen