The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP)
-
Norihito Moniwa
Abstract
An angiotensin-converting enzyme inhibitor (ACE-I) reduces cardiac remodeling and a bradykinin B2 receptor (B2R) antagonist partially abolishes this ACE-I effect. However, bradykinin has two different types of receptor, the B1 receptor (B1R) and B2R. Although B1R is induced under several pathological conditions, including hypertension, the role of cardiac B1R in hypertension is not clear. We therefore investigated the role of cardiac B1R in stroke-prone spontaneously hypertensive rats (SHR-SP) and Wistar-Kyoto (WKY) rats. The B1R mRNA expression level in the heart was significantly higher in SHR-SP than in WKY rats. Chronic infusion of a B1R antagonist for 4 weeks significantly elevated blood pressure and left-ventricular weight of SHR-SP. Morphological analysis indicated that cardiomyocyte size and cardiac fibrosis significantly increased after administration of the B1R antagonist. The phosphorylation of mitogen-activated protein (MAP) kinases, including ERK, p38, and JNK, was significantly increased in the hearts of SHR-SP rats receiving the B1R antagonist. The TGF-β1 expression level was significantly increased in SHR-SP rats treated with the B1R antagonist compared to that in WKY rats. The B1R antagonist significantly increased phosphorylation of Thr495 in endothelial nitric oxide synthase (eNOS), which is an inhibitory site of eNOS. These results suggest that the role of B1R in the heart may be attenuation of cardiac remodeling via inhibition of the expression of MAP kinases and TGF-β1 through an increase in eNOS activity in a hypertensive condition.
References
Agata, J., Miao, R.Q., Yayama, K., Chao, L., and Chao, J. (2000). Bradykinin B1 receptor mediates inhibition of neointima formation in rat artery after balloon angioplasty. Hypertension36, 364–370.10.1161/01.HYP.36.3.364Suche in Google Scholar
Bhoola, K.D., Figueroa, C.D., and Worthy, K. (1992). Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol. Rev.44, 1–80.Suche in Google Scholar
Bledsoe, G., Chao, L., and Chao J. (2003). Kallikrein gene delivery attenuates cardiac remodeling and promotes neovascularization in spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol.285, H1479–H1488.10.1152/ajpheart.01129.2002Suche in Google Scholar
Border, W.A. and Noble, N.A. (1994). Transforming growth factor β in tissue fibrosis. N. Engl. J. Med.331, 1286–1292.Suche in Google Scholar
Brooks, W.W. and Conrad, C.H. (2000). Myocardial fibrosis in transforming growth factor heterozygous mice. J. Mol. Cell. Cardiol.32, 187–195.10.1006/jmcc.1999.1065Suche in Google Scholar
Cai, H. and Harrison, D.G. (2000). Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res.87, 840–844.10.1161/01.RES.87.10.840Suche in Google Scholar
Campos, M.M., Souza, G.E., and Calixto, J.B. (1996). Upregulation of B1 receptor mediating des-Arg9-BK-induced rat paw edema by systemic treatment with bacterial endotoxin. Br. J. Pharmacol.117, 793–798.10.1111/j.1476-5381.1996.tb15262.xSuche in Google Scholar
Casscells, W., Bazoberry, F., Speir, E., Thompson, N., Flanders, K., Kondaiah, P., Ferrans, V.J., Epstein, S.E., and Sporn, M. (1990). Transforming growth factor-β1 in normal heart and in myocardial infarction. Ann. N.Y. Acad. Sci.593, 148–160.10.1111/j.1749-6632.1990.tb16107.xSuche in Google Scholar
Chao, J., Zhang, J.J., Lin, K.F., and Chao, L. (1998). Human kallikrein gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in Dahl salt-sensitive rats. Hum. Gene Ther.9, 21–31.10.1089/hum.1998.9.1-21Suche in Google Scholar
Chen, Z.P., Mitchelhill, K.I., Michell, B.J., Stapleton, D., Rodriguez-Crespo, I., Witters, L.A., Power, D.A., Ortiz de Montellano, P.R., and Kemp, B.E. (1999). AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett.443, 285–289.10.1016/S0014-5793(98)01705-0Suche in Google Scholar
Duguay, D., Der Sarkissian, S., Kouz, R., Ongali, B., Couture, R., and deBlois, D. (2004). Kinin B2 receptor is not involved in enalapril-induced apoptosis and regression of hypertrophy in spontaneously hypertensive rat aorta: possible role of B1 receptor. Br. J. Pharmacol.141, 728–736.10.1038/sj.bjp.0705642Suche in Google Scholar PubMed PubMed Central
Emanueli, C., Maestri, R., Corradi, D., Marchione, R., Minasi, A., Tozzi, M.G., Salis, M.B., Straino, S., Capogrossi, M.C., Olivetti, G., and Madeddu, P. (1999). Dilated and failing cardiomyopathy in bradykinin B2 receptor knockout mice. Circulation100, 2359–2365.10.1161/01.CIR.100.23.2359Suche in Google Scholar
Emanueli, C., Zacheo, A., Minasi, A., Chao, J., Chao, L., Salis, M.B., Stacca, T., Straino, S., Capogrossi, M.C., and Madeddu, P. (2000). Adenovirus-mediated human tissue kallikrein gene delivery induces angiogenesis in normoperfused skeletal muscle. Arterioscler. Thromb. Vasc. Biol.20, 2379–2385.10.1161/01.ATV.20.11.2379Suche in Google Scholar
Emanueli, C., Minasi, A., Zacheo, A., Chao, J., Chao, L., Salis, M.B., Straino, S., Tozzi, M.G., Smith, R., Gaspa, L., et al. (2001a). Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Circulation103, 125–132.10.1161/01.CIR.103.1.125Suche in Google Scholar PubMed
Emanueli, C., Salis, M.B., Stacca, T., Gaspa, L., Chao, J., Chao, L., Piana, A., and Madeddu, P. (2001b). Rescue of impaired angiogenesis in spontaneously hypertensive rats by intramuscular human tissue kallikrein gene transfer. Hypertension38, 136–141.10.1161/01.HYP.38.1.136Suche in Google Scholar PubMed
Furuhashi, M., Ura, N., Murakami, H., Hyakukoku, M., Yamaguchi, K., Higashiura, K., and Shimamoto, K. (2002). Fenofibrate improves insulin sensitivity in connection with intramuscular lipid content, muscle fatty acid-binding protein, and β-oxidation in skeletal muscle. J. Endocrinol.174, 321–329.10.1677/joe.0.1740321Suche in Google Scholar PubMed
Hagiwara, M., Murakami, H., Ura, N., Agata, J., Yoshida, H., Higashiura, K., and Shimamoto, K. (2004). Renal protective role of bradykinin B1 receptor in stroke-prone spontaneously hypertensive rats. Hypertens. Res.27, 399–408.10.1291/hypres.27.399Suche in Google Scholar PubMed
Izumi, Y., Kim, S., Murakami, T., Yamanaka, S., and Iwao, H. (1998). Cardiac mitogen-activated protein kinase activities are chronically increased in stroke-prone hypertensive rats. Hypertension31, 50–56.10.1161/01.HYP.31.1.50Suche in Google Scholar
Jin, L., Zhang, J.J., Chao, L., and Chao, J. (1997). Gene therapy in hypertension: adenovirus-mediated kallikrein gene delivery in hypertensive rats. Hum. Gene Ther.8, 1743–1761.10.1089/hum.1997.8.15-1753Suche in Google Scholar PubMed
Kuwahara, F., Kai, H., Tokuda, K., Kai, M., Takeshita, A., Ega-shira, K., and Imaizumi, T. (2002). Transforming growth factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation106, 130–135.10.1161/01.CIR.0000020689.12472.E0Suche in Google Scholar PubMed
Li, R.K., Li, G., Mickle, D.A., Weisel, R.D., Merante, F., Luss, H., Rao, V., Christakis, G.T., and Williams, W.G. (1997). Overexpression of transforming growth factor-β1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation96, 874–881.10.1161/01.CIR.96.3.874Suche in Google Scholar
Linz, W. and Scholkens, B.A. (1992). Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J. Cardiovasc. Pharmacol.20, S83–S90.Suche in Google Scholar
Linz, W., Wiemer, G., Gohlke, P., Unger, T., and Scholkens, B.A. (1995). Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharmacol. Rev.47, 25–50.Suche in Google Scholar
Madeddu, P., Emanueli, C., Maestri, R., Salis, M.B., Minasi, A., Capogrossi, M.C., and Olivetti, G. (2000). Angiotensin II type 1 receptor blockade prevents cardiac remodeling in bradykinin B2 receptor knockout mice. Hypertension35, 391–396.10.1161/01.HYP.35.1.391Suche in Google Scholar
Marceau, F., Hess J.F., and Bachvarov, D.R. (1998). The B1 receptors for kinins. Pharmacol. Rev.50, 357–386.Suche in Google Scholar
McEachern, A.E., Shelton, E.R., Bhakta, S., Obernolte, R., Bach, C., Zuppan, P., Fujisaki, J., Aldrich, R.W., and Jarnagin, K. (1991). Expression cloning of a rat B2 bradykinin receptor. Proc. Natl. Acad. Sci. USA88, 7724–7728.10.1073/pnas.88.17.7724Suche in Google Scholar
McLean, P.G., Perretti, M., and Ahluwalia, A. (1999). Inducible expression of the kinin B1 receptor in the endotoxemic heart: mechanisms of des-Arg9-bradykinin-induced coronary vasodilation. Br. J. Pharmacol.128, 275–282.10.1038/sj.bjp.0702743Suche in Google Scholar
McLean, P.G., Perretti, M., and Ahluwalia, A. (2000). Kinin B1 receptors and the cardiovascular system: regulation of expression and function. Cardiovasc. Res.48, 194–210.10.1016/S0008-6363(00)00184-XSuche in Google Scholar
Ni, A., Chai, K.X., Chao, L., and Chao, J. (1998). Molecular cloning and expression of rat bradykinin B1 receptor. Biochim. Biophys. Acta1442, 177–185.10.1016/S0167-4781(98)00163-8Suche in Google Scholar
Pauschinger, M., Knopf, D., Petschauer, S., Doerner, A., Poller, W., Schwimmbeck, P.L., Kuhl, U., and Schultheiss, H.P. (1999). Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation99, 2750–2756.10.1161/01.CIR.99.21.2750Suche in Google Scholar
Rosenkranz, S., Flesch, M., Amann, K., Haeuseler, C., Kilter, H., Seeland, U., Schluter, K.D., and Bohm, M. (2002). Alterations of β-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-β1. Am. J. Physiol. Heart Circ. Physiol.283, H1253–H1262.10.1152/ajpheart.00578.2001Suche in Google Scholar
Sanz-Rosa, D., Oubina, M.P., Cediel, E., de Las Heras, N., Vegazo, O., Jimenez, J., Lahera, V., and Cachofeiro, V. (2005). Effect of AT1 receptor antagonism on vascular and circulating inflammatory mediators in SHR: role of NF-κB/IκB system. Am. J. Physiol. Heart Circ. Physiol.288, H111–H115.10.1152/ajpheart.01061.2003Suche in Google Scholar
Silva, J.A. Jr., Araujo, R.C., Baltatu, O., Oliveira, S.M., Tschope, C., Fink, E., Hoffmann, S., Plehm, R., Chai, K.X., Chao, L., et al. (2000). Reduced cardiac hypertrophy and altered blood pressure control in transgenic rats with the human tissue kallikrein gene. FASEB J.14, 1858–1860.10.1096/fj.99-1010fjeSuche in Google Scholar
Spillmann, F., Altmann, C., Scheeler, M., Barbosa, M., Westermann, D., Schultheiss, H.P., Walther, T., and Tschope, C. (2002). Regulation of cardiac bradykinin B1-and B2-receptor mRNA in experimental ischemic, diabetic, and pressure-overload-induced cardiomyopathy. Int. Immunopharmacol.2, 1823–1832.10.1016/S1567-5769(02)00174-1Suche in Google Scholar
Swedberg, K., Held, P., Kjekshus, J., Rasmussen, K., Ryden, L., and Wedel, H. (1992). Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N. Engl. J. Med.327, 678–684.10.1056/NEJM199209033271002Suche in Google Scholar PubMed
The SAVE Investigators (1992). Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. N. Engl. J. Med. 327, 669–677.Suche in Google Scholar
Tschope, C., Gohlke, P., Zhu, Y.Z., Linz, W., Scholkens, B., and Unger, T. (1997). Antihypertensive and cardioprotective effects after angiotensin-converting enzyme inhibition: role of kinins. J. Card. Fail.3, 133–148.10.1016/S1071-9164(97)90047-6Suche in Google Scholar
Tschope, C., Heringer-Walther, S., Koch, M., Spillmann, F., Wendorf, M., Leitner, E., Schultheiss, H.P., and Walther, T. (2000). Upregulation of bradykinin B1-receptor expression after myocardial infarction. Br. J. Pharmacol.129, 1537–1538.10.1038/sj.bjp.0703239Suche in Google Scholar
Wollert, K.C. and Drexler, H. (1997). The kallikrein-kinin system in post-myocardial infarction cardiac remodeling. Am. J. Cardiol.80, 158A–161A.10.1016/S0002-9149(97)00473-6Suche in Google Scholar
Wunsch, M., Sharma, H.S., Markert, T., Bernotat-Danielowski, S., Schott, R.J., Kremer, P., Bleese, N., and Schaper, W. (1991). In situ localization of transforming growth factor β 1 in porcine heart: enhanced expression after chronic coronary artery occlusion. J. Mol. Cell. Cardiol.23, 1051–1062.10.1016/0022-2828(91)91640-DSuche in Google Scholar
Xu, J., Carretero, O.A., Sun, Y., Shesely, E.G., Rhaleb, N.E., Liu, Y.H., Liao, T.D., Yang, J.J., Bader, M., and Yang, X.P. (2005). Role of the B1 kinin receptor in the regulation of cardiac function and remodeling after myocardial infarction. Hypertension45, 747–753.10.1161/01.HYP.0000153322.04859.81Suche in Google Scholar PubMed PubMed Central
Yano, M., Kim, S., Ixumi, Y., Yamanaka, S., and Iwao, H. (1998). Differential activation of cardiac c-Jun amino-terminal kinase and extracellular signal-regulated kinase in angiotensin II-mediated hypertension. Circ. Res.83, 752–760.10.1161/01.RES.83.7.752Suche in Google Scholar
Yayama, K., Wang, C., Chao, L., and Chao, J. (1998). Kallikrein gene delivery attenuates hypertension and cardiac hypertrophy and enhances renal function in Goldblatt hypertensive rats. Hypertension31, 1104–1110.10.1161/01.HYP.31.5.1104Suche in Google Scholar PubMed
Ying, W.Z. and Sanders, P.W. (2003). The interrelationship between TGF-β1 and nitric oxide is altered in salt-sensitive hypertension. Am. J. Physiol. Renal Physiol.285, F902–F908.10.1152/ajprenal.00177.2003Suche in Google Scholar PubMed
©2006 by Walter de Gruyter Berlin New York
Artikel in diesem Heft
- Exploring the future of local vascular and inflammatory mediators
- Genetically altered animal models in the kallikrein-kinin system
- The kinin system mediates hyperalgesia through the inducible bradykinin B1 receptor subtype: evidence in various experimental animal models of type 1 and type 2 diabetic neuropathy
- Cross-talk of the renin-angiotensin and kallikrein-kinin systems
- Which endothelium-derived factors are really important in humans?
- Kinin- and angiotensin-converting enzyme (ACE) inhibitor-mediated nitric oxide production in endothelial cells
- Anti-inflammatory effects of kinins via microglia in the central nervous system
- Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma
- Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins
- Dual antagonists of the bradykinin B1 and B2 receptors based on a postulated common pharmacophore from existing non-peptide antagonists
- Generation and characterization of a humanized bradykinin B1 receptor mouse
- The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP)
- Molecular identification and pharmacological profile of the bovine kinin B1 receptor
- Interplay of human tissue kallikrein 4 (hK4) with the plasminogen activation system: hK4 regulates the structure and functions of the urokinase-type plasminogen activator receptor (uPAR)
- Cathepsin B localizes to plasma membrane caveolae of differentiating myoblasts and is secreted in an active form at physiological pH
Artikel in diesem Heft
- Exploring the future of local vascular and inflammatory mediators
- Genetically altered animal models in the kallikrein-kinin system
- The kinin system mediates hyperalgesia through the inducible bradykinin B1 receptor subtype: evidence in various experimental animal models of type 1 and type 2 diabetic neuropathy
- Cross-talk of the renin-angiotensin and kallikrein-kinin systems
- Which endothelium-derived factors are really important in humans?
- Kinin- and angiotensin-converting enzyme (ACE) inhibitor-mediated nitric oxide production in endothelial cells
- Anti-inflammatory effects of kinins via microglia in the central nervous system
- Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma
- Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins
- Dual antagonists of the bradykinin B1 and B2 receptors based on a postulated common pharmacophore from existing non-peptide antagonists
- Generation and characterization of a humanized bradykinin B1 receptor mouse
- The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP)
- Molecular identification and pharmacological profile of the bovine kinin B1 receptor
- Interplay of human tissue kallikrein 4 (hK4) with the plasminogen activation system: hK4 regulates the structure and functions of the urokinase-type plasminogen activator receptor (uPAR)
- Cathepsin B localizes to plasma membrane caveolae of differentiating myoblasts and is secreted in an active form at physiological pH