Home Life Sciences Generation and characterization of a humanized bradykinin B1 receptor mouse
Article
Licensed
Unlicensed Requires Authentication

Generation and characterization of a humanized bradykinin B1 receptor mouse

  • J. Fred Hess , Richard Z. Chen , Patricia Hey , Robert Breese , Ray S.L. Chang , Tsing-Bau Chen , Mark G. Bock , Thomas Vogt and Douglas J. Pettibone
Published/Copyright: February 9, 2006
Biological Chemistry
From the journal Volume 387 Issue 2

Abstract

Antagonists of the B1 bradykinin receptor (B1R), encoded by the BDKRB1 gene, offer the promise of novel therapeutic agents for inflammatory and neuropathic pain. However, the in vivo characterization of the pharmacodynamics of B1R antagonists is hindered by the low level of B1R expression in healthy tissue and the profound species selectivity exhibited by many compounds for the B1R. To circumvent these issues we generated two genetically engineered rodent models. The first is a transgenic rat over-expressing the human B1R under the control of the neuronal-specific enolase promoter; we previously reported the utility of this model in assessing human B1R receptor occupancy in the central nervous system of the rat. The second model, reported here, utilized gene-targeting by homologous recombination to replace the genomic coding sequence for the endogenous mouse B1R with that of the human B1R. The mRNA expression profile of the humanized Bdkrb1 (hBkdrb1) allele is similar to that of the mouse Bdkrb1 (mBkdrb1) in the wild-type animal. Furthermore, in vitro assays indicate that tissues isolated from the humanized mouse possess pharmacological properties characteristic of the human B1R. Therefore, we have generated a humanized B1R mouse model that is suitable for testing the efficacy of human B1R-selective compounds.

:

Corresponding author

References

Bock, M.G., Hess, J.F., and Pettibone, D.J. (2003). Bradykinin-1 receptor antagonist. In: Annual Report in Medicinal Chemistry, Vol. 38, A.M. Doherty and W.K. Hagmann, eds. (Amsterdam, Netherlands: Elsevier, Academic Press), pp. 111–120.Search in Google Scholar

Eggan, K., Akutsu, H., Loring, J., Jackson-Grusby, L., Klemm, M., Rideout W.M. III, Yanagimachi, R., and Jaenisch, R. (2001). Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl. Acad. Sci. USA98, 6209–6214.10.1073/pnas.101118898Search in Google Scholar

Ferreira, J., Campos, M.M., Araujo, R., Bader, M., Pesquero, J.B., and Calixto, J.B. (2002). The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level. Neuropharmacology43, 1188–1197.10.1016/S0028-3908(02)00311-8Search in Google Scholar

Fox, A., Wotherspoon, G., McNair, K., Hudson, L., Patel, S., Gentry, C., and Winter, J. (2003). Regulation and function of spinal and peripheral neuronal B1 bradykinin receptors in inflammatory mechanical hyperalgesia. Pain104, 683–691.10.1016/S0304-3959(03)00141-6Search in Google Scholar

Fox, A., Kaur, S., Li, B., Panesar, M., Saha, U., Davis, C., Dragoni, I., Colley, S., Ritchie, T., Bevan, S., Burgess, G., and McIntyre, P. (2005). Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor. Br. J. Pharmacol.144, 889–899.10.1038/sj.bjp.0706139Search in Google Scholar

Gougat, J., Ferrari, B., Sarran, L., Planchenault, C., Poncelet, M., Maruani, J., Alonso, R., Cudennec, A., Croci, T., Guagnini, F., et al. (2004). SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J. Pharmacol. Exp. Ther.309, 661–669.10.1124/jpet.103.059527Search in Google Scholar

Hess, J.F., Derrick, A.W., MacNeil, T., and Borkowski, J.A. (1996). The agonist selectivity of a mouse B1 bradykinin receptor differs from human and rabbit B1 receptors. Immunopharmacology33, 1–8.10.1016/0162-3109(96)00074-4Search in Google Scholar

Hess, J.F., Ransom, R.W., Zeng, Z., Chang, R.S., Hey, P.J., Warren, L., Harrell, C.M., Murphy, K.L., Chen, T.B., Miller, P.J., et al. (2004). Generation and characterization of a human bradykinin receptor B1 transgenic rat as a pharmacodynamic model. J. Pharmacol. Exp. Ther.310, 488–497.10.1124/jpet.104.066886Search in Google Scholar

Horlick, R.A., Ohlmeyer, M.H., Stroke, I.L., Strohl, B., Pan, G., Schilling, A.E., Paradkar, V., Quintero, J.G., You, M., Riviello, C., et al. (1999). Small molecule antagonists of the bradykinin B1 receptor. Immunopharmacology43, 169–177.10.1016/S0162-3109(99)00130-7Search in Google Scholar

Horton, R.M., Cai, Z.L., Ho, S.N., and Pease, L.R. (1990). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques8, 528–535.Search in Google Scholar

Jones, C., Phillips, E., Davis, C., Arbuckle, J., Yaqoob, M., Burgess, G.M., Docherty, R.J., Webb, M., Bevan, S.J., and McIntyre, P. (1999). Molecular characterisation of cloned bradykinin B1 receptors from rat and human. Eur. J. Pharmacol.374, 423–433.10.1016/S0014-2999(99)00315-5Search in Google Scholar

Joyner, A.L. (2000). Gene Targeting: A Practical Approach (New York, USA: Oxford University Press).10.1093/oso/9780199637928.001.0001Search in Google Scholar

Kuduk, S.D., Ng, C., Feng, D.M., Wai, J.M., Chang, R.S., Harrell, C.M., Murphy, K.L., Ransom, R.W., Reiss, D., Ivarsson, M., et al. (2004). 2,3-Diaminopyridine bradykinin B1 receptor antagonists. J. Med. Chem.47, 6439–6442.10.1021/jm049394lSearch in Google Scholar

Lawson, S.R., Gabra, B.H., Nantel, F., Battistini, B., and Sirois, P. (2005). Effects of a selective bradykinin B1 receptor antagonist on increased plasma extravasation in streptozotocin-induced diabetic rats: distinct vasculopathic profile of major key organs. Eur. J. Pharmacol.514, 69–78.10.1016/j.ejphar.2005.03.023Search in Google Scholar

Leeb-Lundberg, L.M., Marceau, F., Muller-Esterl, W., Pettibone, D.J., and Zuraw, B.L. (2005). International Union of Pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev.57, 27–77.Search in Google Scholar

MacNeil, T., Bierilo, K.K., Menke, J.G., and Hess, J.F. (1995). Cloning and pharmacological characterization of a rabbit bradykinin B1 receptor. Biochim. Biophys. Acta1264, 223–228.10.1016/0167-4781(95)00152-7Search in Google Scholar

MacNeil, T., Feighner, S., Hreniuk, D.L., Hess, J.F., and Van der Ploeg, L.H. (1997). Partial agonists and full antagonists at the human and murine bradykinin B1 receptors. Can. J. Physiol. Pharmacol.75, 735–740.10.1139/y97-066Search in Google Scholar

Menke, J.G., Borkowski, J.A., Bierilo, K.K., MacNeil, T., Derrick, A.W., Schneck, K.A., Ransom, R.W., Strader, C.D., Linemeyer, D.L., and Hess, J.F. (1994). Expression cloning of a human B1 bradykinin receptor. J. Biol. Chem.269, 21583–21586.10.1016/S0021-9258(17)31844-6Search in Google Scholar

Pesquero, J.B., Araujo, R.C., Heppenstall, P.A., Stucky, C.L., Silva, J.A. Jr., Walther, T., Oliveira, S.M., Pesquero, J.L., Paiva, A.C., Calixto, J.B., et al. (2000). Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc. Natl. Acad. Sci. USA97, 8140–8145.10.1073/pnas.120035997Search in Google Scholar

Ransom, R.W., Harrell, C.M., Reiss, D.R., Murphy, K.L., Chang, R.S., Hess, J.F., Miller, P.J., O'Malley, S.S., Hey, P.J., Kunapuli, P., et al. (2004). Pharmacological characterization and radioligand binding properties of a high-affinity, nonpeptide, bradykinin B1 receptor antagonist. Eur. J. Pharmacol.499, 77–84.10.1016/j.ejphar.2004.07.104Search in Google Scholar

Regoli, D., Marceau, F., and Barabe, J. (1978). De novo formation of vascular receptors for bradykinin. Can. J. Physiol. Pharmacol.56, 674–677.10.1139/y78-109Search in Google Scholar

Regoli, D., Rizzi, A., Calo, G., Nsa Allogho, S., and Gobeil, F. (1997). B1 and B2 kinin receptors in various species. Immunopharmacology36, 143–147.10.1016/S0162-3109(97)00013-1Search in Google Scholar

Su, D.S., Markowitz, M.K., DiPardo, R.M., Murphy, K.L., Harrell, C.M., O'Malley, S.S., Ransom, R.W., Chang, R.S., Ha, S., Hess, F.J., et al. (2003). Discovery of a potent, non-peptide bradykinin B1 receptor antagonist. J. Am. Chem. Soc.125, 7516–7517.10.1021/ja0353457Search in Google Scholar PubMed

Su, D.S., Markowitz, M.K., Murphy, K.L., Wan, B.L., Zrada, M.M., Harrell, C.M., O'Malley, S.S., Hess, J.F., Ransom, R.W., Chang, R.S., et al. (2004). Development of an efficient and selective radioligand for bradykinin B1 receptor occupancy studies. Bioorg. Med. Chem. Lett.14, 6045–6048.10.1016/j.bmcl.2004.09.074Search in Google Scholar PubMed

Wood, M.R., Kim, J.J., Han, W., Dorsey, B.D., Homnick, C.F., DiPardo, R.M., Kuduk, S.D., MacNeil, T., Murphy, K.L., Lis, E.V., et al. (2003). Benzodiazepines as potent and selective bradykinin B1 antagonists. J. Med. Chem.46, 1803–1806.10.1021/jm034020ySearch in Google Scholar PubMed

Published Online: 2006-02-09
Published in Print: 2006-02-01

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Exploring the future of local vascular and inflammatory mediators
  2. Genetically altered animal models in the kallikrein-kinin system
  3. The kinin system mediates hyperalgesia through the inducible bradykinin B1 receptor subtype: evidence in various experimental animal models of type 1 and type 2 diabetic neuropathy
  4. Cross-talk of the renin-angiotensin and kallikrein-kinin systems
  5. Which endothelium-derived factors are really important in humans?
  6. Kinin- and angiotensin-converting enzyme (ACE) inhibitor-mediated nitric oxide production in endothelial cells
  7. Anti-inflammatory effects of kinins via microglia in the central nervous system
  8. Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma
  9. Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins
  10. Dual antagonists of the bradykinin B1 and B2 receptors based on a postulated common pharmacophore from existing non-peptide antagonists
  11. Generation and characterization of a humanized bradykinin B1 receptor mouse
  12. The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP)
  13. Molecular identification and pharmacological profile of the bovine kinin B1 receptor
  14. Interplay of human tissue kallikrein 4 (hK4) with the plasminogen activation system: hK4 regulates the structure and functions of the urokinase-type plasminogen activator receptor (uPAR)
  15. Cathepsin B localizes to plasma membrane caveolae of differentiating myoblasts and is secreted in an active form at physiological pH
Downloaded on 8.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.026/html
Scroll to top button