Startseite The kinin system mediates hyperalgesia through the inducible bradykinin B1 receptor subtype: evidence in various experimental animal models of type 1 and type 2 diabetic neuropathy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The kinin system mediates hyperalgesia through the inducible bradykinin B1 receptor subtype: evidence in various experimental animal models of type 1 and type 2 diabetic neuropathy

  • Bichoy H. Gabra , Nathalie Berthiaume , Pierre Sirois , François Nantel und Bruno Battistini
Veröffentlicht/Copyright: 9. Februar 2006
Biological Chemistry
Aus der Zeitschrift Band 387 Heft 2

Abstract

Both insulin-dependent (type 1) and insulin-independent (type 2) diabetes are complex disorders characterized by symptomatic glucose intolerance due to either defective insulin secretion, insulin action or both. Unchecked hyperglycemia leads to a series of complications among which is painful diabetic neuropathy, for which the kinin system has been implicated. Here, we review and compare the profile of several experimental models of type 1 and 2 diabetes (chemically induced versus gene-prone) and the incidence of diabetic neuropathy upon aging. We discuss the efficacy of selective antagonists of the inducible bradykinin B1 receptor (BKB1-R) subtype against hyperalgesia assessed by various nociceptive tests. In either gene-prone models of type 1 and 2 diabetes, the incidence of hyperalgesia mostly precedes the development of hyperglycemia. The administration of insulin, achieving euglycemia, does not reverse hyperalgesia. Treatment with a selective BKB1-R antagonist does not affect basal nociception in most normal control rats, whereas it induces a significant time- and dose-dependent attenuation of hyperalgesia, or even restores nociceptive responses, in experimental diabetic neuropathy models. Diabetic hyperalgesia is absent in streptozotocin-induced type 1 diabetic BKB1-R knockout mice. Thus, selective antagonism of the inducible BKB1-R subtype may constitute a novel and potential therapeutic approach for the treatment of painful diabetic neuropathy.

:

Corresponding author

References

Aley, K.O. and Levine, J.D. (2001). Rapid onset pain induced by intravenous streptozotocin in the rat. Pain2, 146–150.10.1054/jpai.2001.21592Suche in Google Scholar

Allogho, S.N., Gobeil, F., Pheng, L.H., Nguyen-Le, X.K., Neugebauer, W., and Regoli, D. (1995). Kinin B1 and B2 receptors in the mouse. Can. J. Physiol. Pharmacol.73, 1759–1764.10.1139/y95-240Suche in Google Scholar

Aronin, N., Leeman, S.E., and Clements, R.S. (1987). Diminished flare response in neuropathic patients: comparison of effects of substance P, histamine and capsaicin. Diabetes36, 1139–1143.10.2337/diab.36.10.1139Suche in Google Scholar

Aubel, B., Kayser, V., Mauborgne, A., Farre, A., Hamon, M., and Bourgoin, S. (2004). Antihyperalgesic effects of cizolirtine in diabetic rats: behavioral and biochemical studies. Pain110, 22–32.10.1016/j.pain.2004.03.001Suche in Google Scholar

Basbaum, A.I. and Fields, H.L. (1984). Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci.7, 309–338.10.1146/annurev.ne.07.030184.001521Suche in Google Scholar

Benoit, S.R., Fleming, R., Philis-Tsimikas, A., and Ji, M. (2005). Predictors of glycemic control among patients with type 2 diabetes: a longitudinal study. BMC Public Health175, 36.10.1186/1471-2458-5-36Suche in Google Scholar

Boulton, A.J. and Ward, J.D. (1986). Diabetic neuropathies and pain. Clin. Endocrinol. Metab.15, 917–931.10.1016/S0300-595X(86)80080-9Suche in Google Scholar

Bryborn, M., Adner, M., and Cardell, L.O. (2004). Interleukin-4 increases murine airway response to kinins, via up-regulation of bradykinin B1-receptors and altered signalling along mitogen-activated protein kinase pathways. Clin. Exp. Allergy34, 1291–1298.10.1111/j.1365-2222.2004.02031.xSuche in Google Scholar PubMed

Calcutt, N.A. (2002). Future treatments for diabetic neuropathy: clues from experimental neuropathy. Curr. Diab. Rep.2, 482–488.10.1007/s11892-002-0117-zSuche in Google Scholar PubMed

Calcutt, N.A. (2004). Experimental models of painful diabetic neuropathy. J. Neurol. Sci.220, 137–139.10.1016/j.jns.2004.03.015Suche in Google Scholar PubMed

Calcutt, N.A., Jorge, M.C., Yaksh, T.L., and Chaplan, S.R. (1996). Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain68, 293–299.10.1016/S0304-3959(96)03201-0Suche in Google Scholar

Cameron, N.E., Jack, A.M., and Cotter, M.A. (2001). Effect of α-lipoic acid on vascular responses and nociception in diabetic rats. Free Radic. Biol. Med.31, 125–135.10.1016/S0891-5849(01)00564-0Suche in Google Scholar

Campbell, D.J., Kelly, D.J., Wilkinson-Berka, J.L., Cooper, M.E., and Skinner, S.L. (1999). Increased bradykinin and normal angiotensin peptide levels in diabetic Sprague-Dawley and transgenic (mRen-2) 27 rats. Kidney Int.56, 211–221.10.1046/j.1523-1755.1999.00519.xSuche in Google Scholar

Campos, M.M., Souza, G.E., and Calixto, J.B. (1999). In vivo B1 kinin-receptor up-regulation. Evidence for involvement of protein kinases and nuclear factor κB pathways. Br. J. Pharmacol.127, 1851–1859.Suche in Google Scholar

Chai, K.X., Ni, A., Wang, D., Ward, D.C., Chao, J., and Chao, L. (1996). Genomic DNA sequence, expression, and chromosomal localization of the human B1 bradykinin receptor gene BDKRB1. Genomics31, 51–57.10.1006/geno.1996.0008Suche in Google Scholar

Chappel, C.I. and Chappel, W.R. (1983). The discovery and development of the BB rat colony: an animal model of spontaneous diabetes mellitus. Metabolism32 (Suppl. 1), 8–10.10.1016/S0026-0495(83)80004-3Suche in Google Scholar

Cloutier, F. and Couture, R. (2000). Pharmacological characterization of the cardiovascular responses elicited by kinin B1 and B2 receptor agonists in the spinal cord of streptozotocin-diabetic rats. Br. J. Pharmacol.130, 375–385.10.1038/sj.bjp.0703319Suche in Google Scholar

Coderre, T.J. and Rollman, G.B. (1983). Naloxone hyperalgesia and stress-induced analgesia in rats. Life Sci.32, 2139–2146.10.1016/0024-3205(83)90103-0Suche in Google Scholar

Courteix, C., Eschalier, A., and Lavarenne, J. (1993). Streptozotocin induced diabetic rats: behavioural evidence for a model of chronic pain. Pain53, 81–88.10.1016/0304-3959(93)90059-XSuche in Google Scholar

Couture, R., Harrisson, M., Vianna, R.M., and Cloutier, F. (2001). Kinin receptors in pain and inflammation. Eur. J. Pharmacol.429, 161–176.10.1016/S0014-2999(01)01318-8Suche in Google Scholar

D'Amour, F.E. and Smith, D.L. (1941). A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther.72, 74–79.Suche in Google Scholar

Décarie, A., Adam, A., and Couture, R. (1996). Effects of captopril and Icatibant on bradykinin (BK) and des [Arg9] BK in carrageenan-induced oedema. Peptides17, 1009–1015.Suche in Google Scholar

Dray, A. and Perkins, M. (1997). Kinins and pain. In: The Kinin System, S. Farmer, ed. (San Diego, USA: Academic Press), pp. 157–172.10.1016/B978-012249340-9/50011-5Suche in Google Scholar

Eaton, M. (2003). Common animal models for spasticity and pain. J. Rehab. Res. Dev.40, 41–54.10.1682/JRRD.2003.08.0041Suche in Google Scholar

Eddy, N.P. and Leimbach, D. (1953). Synthetic analgesics (II), dithienylbutenyl and dithienylbutylamines. J. Pharmacol. Exp. Ther.107, 385–389.Suche in Google Scholar

Etgen, G.J. and Oldham, B.A. (2000). Profiling of Zucker diabetic fatty rats in their progression to overt diabetic state. Metabolism49, 684–688.10.1016/S0026-0495(00)80049-9Suche in Google Scholar

Farmer, S.G., McMillan, B.A., Meeker, S.N., and Burch, R.M. (1991). Induction of vascular smooth muscle bradykinin B1 receptors in vivo during antigen arthritis. Agents Actions34, 191–193.10.1007/BF01993275Suche in Google Scholar

Faussner, A., Bathon, J.M., and Proud, D. (1999). Comparison of the responses of B1 and B2 kinin receptors to agonist stimulation. Immunopharmacology45, 13–20.10.1016/S0162-3109(99)00052-1Suche in Google Scholar

Ferreira, J., Campos, M.M., Araujo, R., Bader, M., Pesquero, J.B., and Calixto, J.B. (2002). The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level. Neuropharmacology43, 1188–1197.10.1016/S0028-3908(02)00311-8Suche in Google Scholar

Fields, H.L. and Levine, J.D. (1984). Pain mechanics and management. West. J. Med.1141, 347–357.Suche in Google Scholar

Fox, A., Kaur, S., Li, B., Panesar, M., Saha, U., Davis, C., Dragoni, I., Colley, S., Ritchie, T., Bevan, S., et al. (2005). Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor. Br. J. Pharmacol.144, 889–899.10.1038/sj.bjp.0706139Suche in Google Scholar

Gabbay, K.H. (2004). Aldose reductase inhibition in the treatment of diabetic neuropathy: where are we in 2004? Curr. Diab. Rep.4, 405–408.10.1007/s11892-004-0047-zSuche in Google Scholar

Gabra, B.H. and Sirois, P. (2002). Role of kinin B1 receptors in diabetes-induced hyperalgesia in streptozotocin-treated mice. Eur. J. Pharmacol.457, 115–124.10.1016/S0014-2999(02)02658-4Suche in Google Scholar

Gabra, B.H. and Sirois, P. (2003a). Kinin B1 receptor antagonists inhibit diabetes-mediated hyperalgesia in mice. Neuropeptides37, 36–44.10.1016/S0143-4179(02)00148-8Suche in Google Scholar

Gabra, B.H. and Sirois, P. (2003b). Beneficial effect of chronic treatment with the selective bradykinin B1 receptor antagonists, R-715 and R-954, in attenuating streptozotocin-diabetic thermal hyperalgesia in mice. Peptides24, 1131–1139.10.1016/j.peptides.2003.06.003Suche in Google Scholar PubMed

Gabra, B.H. and Sirois, P. (2004). Pathways for the bradykinin B1 receptor-mediated diabetic hyperalgesia in mice. Inflamm. Res.53, 653–657.10.1007/s00011-004-1310-0Suche in Google Scholar

Gabra, B.H. and Sirois, P. (2005). Hyperalgesia in non-obese diabetic (NOD) mice: a role for the inducible bradykinin B1 receptor. Eur. J. Pharmacol.514, 61–67.10.1016/j.ejphar.2005.03.018Suche in Google Scholar

Gabra, B.H., Merino, V.F., Bader, M., Pesquero, J.B., and Sirois, P. (2005a). Absence of diabetic hyperalgesia in bradykinin B1 receptor-knockout mice. Regul. Pept.127, 245–248.10.1016/j.regpep.2004.12.003Suche in Google Scholar

Gabra, B.H., Benrezzak, O., Pheng, L-H., Duta, D., Daull, P., Sirois, P., Nantel, F., and Battistinin B. (2005b). Inhibition of type 1 diabetic hyperalgesia in streptozotocin-induced Wistar versus spontaneous gene-prone BB/Worcester rats: efficacy of a selective bradykinin B1 receptor antagonist. J. Neuropathol. Exp. Neurol.64, 1–8.10.1097/01.jnen.0000178448.79713.5fSuche in Google Scholar

Gobeil, F., Charland S., Filteau C., Perron, S.I., Neugebauer, W., and Regoli, D. (1999). Kinin B1 receptor antagonists containing α-methyl-L-Phenylalanine: in vitro and in vivo antagonistic activities. Hypertension33, 823–829.10.1161/01.HYP.33.3.823Suche in Google Scholar

Goldstein, D.J., Lu, Y., Detke, M.J., Lee, T.C., and Iyengar, S. (2005). Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain116, 109–118.Suche in Google Scholar

Gougat, J., Ferrari, B., Sarran, L., Planchenault, C., Poncelet, M., Maruani, J., Alonso, R., Cudennec, A., Croci, T., Guagnini, F., et al. (2004). SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[6-methoxy-2-naphthyl)sulfonyl]aminopropanoyl)amino]-3-(4-2R,6S)-2,6-dimethylpiperidinyl]methylphenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J. Pharmacol. Exp. Ther.309, 661–669.10.1124/jpet.103.059527Suche in Google Scholar

Hagiwara, M., Murakami, H., Ura, N., Agata, J., Yoshida, H., Higashiura, K., Shimamoto, K. (2004). Renal protective role of bradykinin B1 receptor in stroke-prone spontaneously hypertensive rats. Hypertens. Res.27, 399–408.10.1291/hypres.27.399Suche in Google Scholar

Hamada, Y. and Nakamura, J. (2004). Clinical potential of aldose reductase inhibitors in diabetic neuropathy. Treat Endocrinol.3, 245–255.10.2165/00024677-200403040-00006Suche in Google Scholar

Hanson, W.L., McCullough, R.G., Selig, W.M., Wieczorek, M., Ross, S., Whalley, E.T., Stewart, J.M., and Gera, L. (1996). In vivo pharmacological profile of novel, potent, stable BK antagonists at B1 and B2 receptors. Immunopharmacology33, 191–193.10.1016/0162-3109(96)00037-9Suche in Google Scholar

Hargreaves, K.M., Dubner, R., Brown, F., Flores, C., and Joris, J. (1988). A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain32, 77–88.10.1016/0304-3959(88)90026-7Suche in Google Scholar

Harvey, J.N. (2003). Trends in the prevalence of diabetic nephropathy in type 1 and type 2 diabetes. Curr. Opin. Nephrol. Hypertens.12, 317–322.10.1097/00041552-200305000-00015Suche in Google Scholar

Heger, S., Maier, C., Otter, K., Helwig, U., Suttorp, M., and Berger, A. (1999). Lesson of the week: morphine induced allodynia in a child with brain tumour: what is allodynia? Br. Med. J.319, 627–629.10.1136/bmj.319.7210.627Suche in Google Scholar

Ho, E., Quan, N., Tsai, Y.H., Lai, W., and Bray, T.M. (2001). Dietary zinc supplementation inhibits NF-kB activation and protects against chemically induced diabetes in CD1 mice. Exp. Biol. Med. (Maywood)226, 103–111.10.1177/153537020122600207Suche in Google Scholar

Horlick, R.A., Ohlmeyer, M.H., Stroke, I.L., Strohl, B., Pan, G., et al. (1999). Small molecule antagonists of the bradykinin B1 receptor. Immunopharmacology43, 169–177.10.1016/S0162-3109(99)00130-7Suche in Google Scholar

Irwin, S., Houde, R.W., Bennett, D.R., Hendershot, L.C., and Seevers, M.H. (1951). The effects of morphine methadone and meperidine on some reflex responses of spinal animals to nociceptive stimulation. J. Pharmacol. Exp. Ther.101, 132–143.Suche in Google Scholar

Kim, J.Y., Chi, J.K., Kim, E.J., Park, S.Y., Kim, Y.W., and Lee, S.K. (1997). Inhibition of diabetes in non-obese diabetic mice by nicotinamide treatment for 5 weeks at the early age. J. Korean Med. Sci.12, 293–297.10.3346/jkms.1997.12.4.293Suche in Google Scholar PubMed PubMed Central

Koyama, S., Sato, E., Numanami, H., Kubo, K., Nagai, S., and Izumi, T. (2000). Bradykinin stimulates lung fibroblasts to release neutrophil and monocyte chemotactic activity. Am. J. Respir. Cell Mol. Biol.22, 75–84.10.1165/ajrcmb.22.1.3752Suche in Google Scholar PubMed

Lang, J. and Bellgrau, D. (2004). Animal models of type 1 diabetes: genetics and immunological function. Adv. Exp. Med. Biol.552, 91–116.Suche in Google Scholar

Larrivée, J.F., Bachvarov, D.R., Houle, F., Landry, J., Huot, J., and Marceau, F. (1998). Role of the mitogen-activated protein kinases in the expression of the kinin B1 receptors induced by tissue injury. J. Immunol.160, 1419–1426.10.4049/jimmunol.160.3.1419Suche in Google Scholar

Lawson, S.R., Gabra, B.H., Guérin, B., Neugebauer, W., Nantel, F., Battistini, B., and Sirois, P. (2005a). Enhanced dermal and retinal vascular permeability in streptozotocin-induced type 1 diabetes in Wistar rats: blockade with a selective bradykinin B1 receptor antagonist. Regul. Pept.124, 221–224.10.1016/j.regpep.2004.09.002Suche in Google Scholar PubMed

Lawson, S.R., Gabra, B.H., Nantel, F., Battistini, B., and Sirois, P. (2005b). Effects of selective bradykinin B1 receptor antagonist on increased plasma extravasation in streptozotocin-induced diabetic rats: Distinct vasculopathic profile of major key organs. Eur. J. Pharmacol.514, 69–78.10.1016/j.ejphar.2005.03.023Suche in Google Scholar PubMed

Le Bars, D., Gozariu, M., and Cadden, S.W. (2001). Animal models of nociception. Pharmacol. Rev.53, 597–652.Suche in Google Scholar

Leeb-Lundberg, L.M., Marceau, F., Müller-Esterl, W., Pettibone, D.J., and Zuraw, B.L. (2005). International Union of Pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev.57, 27–77.Suche in Google Scholar

Like, A.A., Guberski, D.L., and Butler, L. (1986). Diabetic BioBreeding/Worcester (BB/Wor) rats need not be lymphopenic. J. Immunol.136, 3254–3258.10.4049/jimmunol.136.9.3254Suche in Google Scholar

Mage, M., Pecher, C., Neau, E., Cellier, E., Dos Reiss, M.L., Schanstra, J.P., Couture, R., Bascands, J.L., and Girolami, J.P. (2002). Induction of B1 receptors in streptozotocin diabetic rats: possible involvement in the control of hyperglycemia-induced glomerular Erk 1 and 2 phosphorylation. Can. J. Physiol. Pharmacol.80, 328–333.10.1139/y02-024Suche in Google Scholar PubMed

Malik, R.A. (2003). Current and future strategies for the management of diabetic neuropathy. Treat. Endocrinol.2, 389–400.10.2165/00024677-200302060-00003Suche in Google Scholar PubMed

Mantione, C.R. and Rodriguez, R. (1990). A bradykinin (BK)1 receptor antagonist blocks capsaicin-induced ear inflammation in mice. Br. J. Pharmacol.99, 516518.10.1111/j.1476-5381.1990.tb12960.xSuche in Google Scholar PubMed PubMed Central

Marceau, F. and Regoli, D. (2004). Bradykinin receptor ligands: therapeutic perspectives. Nat. Rev. Drug Discov.3, 845–852.10.1038/nrd1522Suche in Google Scholar PubMed

Marceau, F., Hess, J.F., and Bacharov, D.R. (1998). The B1 receptors for kinins. Pharmacol. Rev.50, 357–386.Suche in Google Scholar

Mason, G.S., Cumberbatch, M.J., Hill, R.G., and Rupniak, N.M. (2002). The bradykinin B1 receptor antagonist B9858 inhibits a nociceptive spinal reflex in rabbits. Can. J. Physiol. Pharmacol.80, 264–268.10.1139/y02-049Suche in Google Scholar PubMed

Matsuzaka, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Okazaki, H., and Tamura, Y. (2004). Insulin-independent induction of sterol regulatory element binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes53, 560–569.10.2337/diabetes.53.3.560Suche in Google Scholar PubMed

Melzack, R. and Wall, P.D. (1965). Pain mechanism: a new theory. Science150, 971–979.10.1126/science.150.3699.971Suche in Google Scholar PubMed

Nakhooda, A.F., Like, A.A., Chappel, C.I., Murray, F.T., and Marliss, E.B. (1977). The spontaneously diabetic Wistar rat. Metabolic and morphologic studies. Diabetes26, 100–112.Suche in Google Scholar

Nantel, F., Daull, P., Berthiaume, N., Duta, D.N., Blouin, A., Cayer, J., Beaudoin, M., Belleville, K., Benrezzak, O., Sirois, P., and Battistini, B. (2005). Integrated in vivo pharmacology using an instrumented, unrestrained and conscious rat platform: application to rat models of diabetes. J. Pharmacol. Toxicol. Methods, electronic publication (doi: 10.1016/j.vascn.2005.09.005).Suche in Google Scholar

Necker, R. and Hellon, R.F. (1978). Noxious thermal input from the rat tail: modulation by descending inhibitory influences. Pain4, 231–242.Suche in Google Scholar

Neugebauer, W., Blais, P.A., Halle, S., Filteau, C., Regoli, D., and Gobeil, F. (2002). Kinin B1 receptor antagonists with multi-enzymatic resistance properties. Can. J. Physiol. Pharmacol.80, 287–292.10.1139/y02-053Suche in Google Scholar PubMed

Ongali, B., Campos, M.M., Petcu, M., Rodi, D., Cloutier, F., Chabot, J.G., Thibault, G., and Couture, R. (2004). Expression of kinin B1 receptors in the spinal cord of streptozotocin-diabetic rat. NeuroReport15, 2463–2466.10.1097/00001756-200411150-00006Suche in Google Scholar PubMed

Ozansoy, G., Akin, B., Aktan, F., and Karasu, C. (2001). Short-term gemfibrozil treatment reverses lipid profile and peroxidation but does not alter blood glucose and tissue antioxidant enzymes in chronically diabetic rats. Mol. Cell. Biochem.216, 59–63.10.1023/A:1011000327529Suche in Google Scholar

Park, T.S., Park, J.H., and Baek, H.S. (2004). Can diabetic neuropathy be prevented? Diabetes Res. Clin. Pract.66, S53–S56.Suche in Google Scholar

Pesquero, J.B., Araujo, R.C., Heppenstall, P.A., Stucky, C.L., Silva, J.A. Jr., Walther, T., Oliveira, S.M., Pesquero, J.L., Paiva, A.C., Calixto, J.B., et al. (2000). Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc. Natl. Acad. Sci. USA97, 8140–8145.10.1073/pnas.120035997Suche in Google Scholar PubMed PubMed Central

Pfeifer, M.A. and Schumer, M.P. (1995). Clinical trials of diabetic neuropathy: past, present, and future. Diabetes44, 1355–1361.10.2337/diab.44.12.1355Suche in Google Scholar PubMed

Phagoo, S.B., Poole, S., and Leeb-Lundberg, L.M. (1999). Auto-regulation of bradykinin receptors: agonists in the presence of interleukin-1β shift the repertoire of receptor subtypes from B2 to B1 in human lung fibroblasts. Mol. Pharmacol.56, 325–333.10.1124/mol.56.2.325Suche in Google Scholar

Pheng, L.H., Nguyen-Le, X.K., Nsa Allogho, S., Gobeil, F., and Regoli, D. (1997). Kinin receptors in the diabetic mouse. Can. J. Physiol. Pharmacol.75, 609–611.10.1139/y97-020Suche in Google Scholar

Pinhas-Hamiel, O. and Zeitler, P. (2005). The global spread of type 2 diabetes mellitus in children and adolescents. J. Pediatr.146, 693–700.10.1016/j.jpeds.2004.12.042Suche in Google Scholar

Pruneau, D., Porreca, F., Vanderah, T.W., Barth, M., Dodey, P., Junien, J.L., Peyrou, V., and Luccarini, J.M. (2004). Non-peptidic B1 receptor antagonists and their actions in pain. In: Peptide Receptors Symposium, Montreal, 2004.Suche in Google Scholar

Quinn, L. (2001). Type 2 diabetes: epidemiology, pathophysiology, and diagnosis. Nurs. Clin. North Am.36, 175–192.10.1016/S0029-6465(22)02543-9Suche in Google Scholar

Rabinovitch, A. and Suarez-Pinzon, W.L. (1998). Cytokines and their roles in pancreatic islet β-cell destruction and insulin-dependent diabetes mellitus. Biochem. Pharmacol.55, 1139–1149.10.1016/S0006-2952(97)00492-9Suche in Google Scholar

Ramabadran, K. and Bansinath, M. (1986). Naloxone-morphine synergism. Anesth. Analg.65, 1252.10.1213/00000539-198611000-00040Suche in Google Scholar

Ramabadran, K., Bansinath, M., Turndorf, H., and Puig, M.M. (1989). The hyperalgesic effect of naloxone is attenuated in streptozotocin-diabetic mice. Psychopharmacology97, 169–174.10.1007/BF00442244Suche in Google Scholar

Rees, D.A. and Alcolado, J.C. (2005). Animal models of diabetes mellitus. Diabet. Med.22, 359–370.10.1111/j.1464-5491.2005.01499.xSuche in Google Scholar

Regoli, D., Pheng, L.H., Allogho, S.N., Nguyen-Le, X.K., and Gobeil, F. (1996a). Receptors for kinins: from classical pharmacology to molecular biology. Immunopharmacology33, 116–122.10.1016/0162-3109(96)00025-2Suche in Google Scholar

Regoli, D., Pheng, L.H., Allogho, S.N., Nguyen-Le, X.K., and Gobeil, F. (1996b). Receptors for kinins: from classical pharmacology to molecular biology. Immunopharmacology33, 24–31.10.1016/0162-3109(96)00077-XSuche in Google Scholar

Rewers, M., Norris, J., and Dabelea, D. (2004). Epidemiology of type 1 diabetes mellitus. Adv. Exp. Med. Biol.552, 219–246.Suche in Google Scholar

Richter, R.W., Portenoy, R., Sharma, U., Lamoreaux, L., Bockbrader, H., and Knapp, L.E. (2005). Relief of painful diabetic peripheral neuropathy with pregabalin: a randomized, placebo-controlled trial. J. Pain6, 253–260.10.1016/j.jpain.2004.12.007Suche in Google Scholar PubMed

Ritchie, T.J., Dziadulewicz, E.K., Culshaw, A.J., Muller, W., Burgess, G.M., Bloomfield, G.C. et al. (2004). Potent and orally bioavailable non-peptide antagonists a the human bradykinin B1 receptor based on a 2-alkylamino-5-sulfamoylbenzamide core. J. Med. Chem.47, 4642–4644.10.1021/jm049747gSuche in Google Scholar

Rossini, A.A., Handler, E.S., Mordes, J.P., and Greiner, D.L. (1995). Animal models of human disease. Human autoimmune diabetes mellitus: lessons from BB rats and NOD mice. Clin. Immunol. Immunopathol.74, 2–9.Suche in Google Scholar

Rothschild, A., Melo, V., Reis, M., and Foss, G. Jr. (1999). Kininogen and prekallikrein increases in the blood of streptozotocin diabetic rats are normalized by insulin in vivo andin vitro. Naunyn-Schmiedeberg's Arch. Pharmacol.360, 217–220.10.1007/s002109900068Suche in Google Scholar

Sardi, S.P., Ares, V.R., Errasti, A.E., and Rothlin, R.P. (1998). Bradykinin B1 receptors in human umbilical vein: pharmacological evidence of up-regulation and induction by interleukin-1β. Eur. J. Pharmacol.358, 221–227.10.1016/S0014-2999(98)00609-8Suche in Google Scholar

Schanstra, J.P., Bataille, E., Marin Castano, M.E., Barascud, Y., Hirtz, C., Pesquero, J.B., Pecher, C., Gauthier, F., Girolami, J.P., and Bascands, J.L. (1998). The B1-agonist [des-Arg10]-kallidin activates transcription factor NF-κB and induces homologous up-regulation of the bradykinin B1-receptor in cultured human lung fibroblasts. J. Clin. Invest.101, 2080–2091.10.1172/JCI1359Suche in Google Scholar PubMed PubMed Central

Schremmer-Danninger, E., Offner, A., Siebeck, M., and Roscher, A.A. (1998). B1 bradykinin receptors and carboxypeptidase M are both up-regulated in the aorta of pigs after LPS infusion. Biochem. Biophys. Res. Commun.243, 246–252.10.1006/bbrc.1997.7999Suche in Google Scholar PubMed

Seidell, J.C. (2000). Obesity, insulin resistance and diabetes – a worldwide epidemic. Br. J. Nutr.83, S5–S8.10.1017/S000711450000088XSuche in Google Scholar

Shin, J., Cho, H., Hwang, S.W., Jung, J., Shin, C.Y., Lee, S.Y., Kim, S.H., Lee, M.G., Choi, Y.H., Kim, J., et al. (2002). Bradykin-12-lipoxygenase-VR-1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. USA99, 10150–10155.10.1073/pnas.152002699Suche in Google Scholar PubMed PubMed Central

Simard, B., Gabra, B.H., and Sirois, P. (2002). Inhibitory effect of a novel bradykinin B1 receptor antagonist, R-954, on enhanced vascular permeability in type 1 diabetic mice. Can. J. Physiol. Pharmacol.80, 1203–1207.10.1139/y02-153Suche in Google Scholar PubMed

Singh, N., Armstrong, D.G., and Lipsky, B.A. (2005). Preventing foot ulcers in patients with diabetes. JAMA293, 217–228.10.1001/jama.293.2.217Suche in Google Scholar PubMed

Singh, R., Shaw, J., and Zimmet, P. (2004). Epidemiology of childhood type 2 diabetes in the developing world. Pediatr. Diabetes5, 154–168.10.1111/j.1399-543X.2004.00060.xSuche in Google Scholar PubMed

Spillmann, F., Altmann, C., Scheeler, M., Barbosa, M., Westermann, D., Schultheiss, H.P., Walther, T., and Tschope, C. (2002). Regulation of cardiac bradykinin B1 and B2-receptor mRNA in experimental ischemic, diabetic and pressure-overload-induced cardiomyopathy. Int. Immunopharmacol.2, 1823–1832.10.1016/S1567-5769(02)00174-1Suche in Google Scholar

Stewart, J.M., Gera, L., York, E.J., Chan, D.C., and Bunn, P. (1999). Bradykinin antagonists: present progress and future prospects. Immunopharmacology43, 155–161.10.1016/S0162-3109(99)00102-2Suche in Google Scholar

Su, D.S., Markowitz, M.K., DiPardo, R.M., Murphy, K.L., Harrell, C.M., O'Malley, S.S., et al. (2003). Discovery of a potent, non-peptide bradykinin receptor antagonist. J. Am. Chem. Soc.125, 7516–7517.10.1021/ja0353457Suche in Google Scholar

Tolman, K.G., Fonseca, V., Tan, M.H., and Dalpiaz, A. (2004). Narrative review: hepatobiliary disease in type 2 diabetes mellitus. Ann. Intern. Med.141, 946–956.10.7326/0003-4819-141-12-200412210-00011Suche in Google Scholar

Tschope, C., Walther, T., Yu, M., Reinecke, A., Koch, M., Seligmann, C., Heringer, S.B., Pesquero, J.B., Bader, M., Schultheiss, H., and Unger, T. (1999). Myocardial expression of rat bradykinin receptors and two tissue kallikrein genes in experimental diabetes. Immunopharmacology44, 35–42.10.1016/S0162-3109(99)00109-5Suche in Google Scholar

Vianna, R.M., Ongali, B., Regoli, D., Calixto, J.B., and Couture, R. (2003). Up-regulation of kinin B1 receptor in the lung of streptozotocin-diabetic rat: autoradiographic and functional evidence. Br. J. Pharmacol.138, 13–22.10.1038/sj.bjp.0704999Suche in Google Scholar

Vinik, A. and Mitchell, B. (1988). Clinical aspects of diabetic neuropathies. Diabetes Metab. Rev.4, 223–253.10.1002/dmr.5610040304Suche in Google Scholar

Vinik, A.I., Holland, M.T., Le Beau, J.M., Liuzzi, F.J., Stansberry, K.B., and Colen, L.B. (1992). Diabetic neuropathies. Diabetes Care15, 1926–1975.10.2337/diacare.15.12.1926Suche in Google Scholar

Viswalingam, A. and Caldwell, J. (1997). Cinnamyl anthranilate causes coinduction of hepatic microsomal and peroxisomal enzymes in mouse but not rat. Toxicol. Appl. Pharmacol.142, 338–347.10.1006/taap.1996.8043Suche in Google Scholar

Walker, K., Perkins, M., and Dray, A. (1995). Kinins and kinin receptors in the nervous system. Neurochem. Int.26, 1–16.10.1016/0197-0186(94)00114-ASuche in Google Scholar

Wang, L.X. and Wang, Z.J. (2003). Animal and cellular models of chronic pain. Adv. Drug Deliv. Rev.55, 949–965.10.1016/S0169-409X(03)00098-XSuche in Google Scholar

Watson, C.P. (2000). The treatment of neuropathic pain: antidepressants and opioids. Clin. J. Pain16, S49–S55.10.1097/00002508-200006001-00009Suche in Google Scholar

Winer, N. and Sowers, J.R. (2004). Epidemiology of diabetes. J. Clin. Pharmacol.44, 397–405.10.1177/0091270004263017Suche in Google Scholar

Woolf, C.J. (1992). Excitability changes in central neurons following peripheral damage: role of central sensitization in the pathogenesis of pain. In: Hyperalgesia and Allodynia, W. Willis, ed. (New York, USA: Raven Press), pp. 221–243.Suche in Google Scholar

Wuarin-Bierman, L., Zahnd, G.R., Kaufmann, F., Burcklen, L., and Adler, J. (1987). Hyperalgesia in spontaneous and experimental animal models of diabetic neuropathy. Diabetologia30, 653–658.10.1007/BF00277324Suche in Google Scholar

Yerneni, K.K., Bai, W., Khan, B.V., Medford, R.M., and Natarajan, R. (1999). Hyperglycemia-induced activation of nuclear transcription factor κB in vascular smooth muscle cells. Diabetes48, 855–864.10.2337/diabetes.48.4.855Suche in Google Scholar

Zhang, W., Slusher, B., Murakawa, Y., Wozniak, K.M., Tsukamoto, T., Jackson, P.F., and Sima, A.A. (2002). GCPII (NAALADase) inhibition prevents long-term diabetic neuropathy in type 1 diabetic BB/Wor rats. J. Neurol. Sci.194, 21–28.10.1016/S0022-510X(01)00670-0Suche in Google Scholar

Zhou, X., Polgar, P., and Taylor, L. (1998). Roles for interleukin-1β, phorbol ester and a post-transcriptional regulator in the control of bradykinin B1 receptor gene expression. Biochem. J.330, 361–366.10.1042/bj3300361Suche in Google Scholar

Zuccollo, A., Navarro, M., and Catanzaro, O. (1996). Effects of B1 and B2 kinin receptor antagonists in diabetic mice. Can. J. Physiol. Pharmacol.74, 586–589.10.1139/y96-047Suche in Google Scholar

Zuccollo, A., Navarro, M., Frontera, M., Cueva, F., Carattino, M., and Catanzaro, O. (1999). The involvement of kallikrein-kinin system in diabetes type 1 (insulitis). Immunopharamacology45, 69–74.10.1016/S0162-3109(99)00149-6Suche in Google Scholar

Published Online: 2006-02-09
Published in Print: 2006-02-01

©2006 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Exploring the future of local vascular and inflammatory mediators
  2. Genetically altered animal models in the kallikrein-kinin system
  3. The kinin system mediates hyperalgesia through the inducible bradykinin B1 receptor subtype: evidence in various experimental animal models of type 1 and type 2 diabetic neuropathy
  4. Cross-talk of the renin-angiotensin and kallikrein-kinin systems
  5. Which endothelium-derived factors are really important in humans?
  6. Kinin- and angiotensin-converting enzyme (ACE) inhibitor-mediated nitric oxide production in endothelial cells
  7. Anti-inflammatory effects of kinins via microglia in the central nervous system
  8. Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma
  9. Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins
  10. Dual antagonists of the bradykinin B1 and B2 receptors based on a postulated common pharmacophore from existing non-peptide antagonists
  11. Generation and characterization of a humanized bradykinin B1 receptor mouse
  12. The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP)
  13. Molecular identification and pharmacological profile of the bovine kinin B1 receptor
  14. Interplay of human tissue kallikrein 4 (hK4) with the plasminogen activation system: hK4 regulates the structure and functions of the urokinase-type plasminogen activator receptor (uPAR)
  15. Cathepsin B localizes to plasma membrane caveolae of differentiating myoblasts and is secreted in an active form at physiological pH
Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.018/html
Button zum nach oben scrollen