Startseite Structural and functional comparison of HemN to other radical SAM enzymes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structural and functional comparison of HemN to other radical SAM enzymes

  • Gunhild Layer , Eric Kervio , Gaby Morlock , Dirk W. Heinz , Dieter Jahn , Janos Retey und Wolf-Dieter Schubert
Veröffentlicht/Copyright: 12. Oktober 2005
Biological Chemistry
Aus der Zeitschrift Band 386 Heft 10

Abstract

Radical SAM enzymes have only recently been recognized as an ancient family sharing an unusual radical-based reaction mechanism. This late appreciation is due to the extreme oxygen sensitivity of most radical SAM enzymes, making their characterization particularly arduous. Nevertheless, realization that the novel apposition of the established cofactors S-adenosylmethionine and [4Fe-4S] cluster creates an explosive source of catalytic radicals, the appreciation of the sheer size of this previously neglected family, and the rapid succession of three successfully solved crystal structures within a year have ensured that this family has belatedly been noted. In this review, we report the characterization of two enzymes: the established radical SAM enzyme, HemN or oxygen-independent coproporphyrinogen III oxidase from Escherichia coli, and littorine mutase, a presumed radical SAM enzyme, responsible for the conversion of littorine to hyoscyamine in plants. The enzymes are compared to other radical SAM enzymes and in particular the three reported crystal structures from this family, HemN, biotin synthase and MoaA, are discussed.

:

Corresponding authors

References

Ballinger, M.D., Frey, P.A., and Reed, G.H. (1992a). Structure of a substrate radical intermediate in the reaction of lysine 2,3-aminomutase. Biochemistry31, 10782–10789.10.1021/bi00159a020Suche in Google Scholar PubMed

Ballinger, M.D., Reed, G.H., and Frey, P.A. (1992b). An organic radical in the lysine 2,3-aminomutase reaction. Biochemistry31, 949–953.10.1021/bi00119a001Suche in Google Scholar PubMed

Banerjee, R. (2003a). Introduction: radical enzymology. Chem. Rev.103, 2081–2082.10.1021/cr010216zSuche in Google Scholar

Banerjee, R. (2003b). Radical carbon skeleton rearrangements: catalysis by coenzyme B12-dependent mutases. Chem. Rev.103, 2083–2094.10.1021/cr0204395Suche in Google Scholar PubMed

Berkovitch, F., Nicolet, Y., Wan, J.T., Jarrett, J.T., and Drennan, C.L. (2004). Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science303, 76–79.10.1126/science.1088493Suche in Google Scholar PubMed PubMed Central

Birch, O.M., Fuhrmann, M., and Shaw, N.M. (1995). Biotin synthase from Escherichia coli, an investigation of the low molecular weight and protein components required for activity in vitro. J. Biol. Chem.270, 19158–19165.10.1074/jbc.270.32.19158Suche in Google Scholar PubMed

Breckau, D., Mahlitz, E., Sauerwald, A., Layer, G., and Jahn, D. (2003). Oxygen-dependent coproporphyrinogen III oxidase (HemF) from Escherichia coli is stimulated by manganese. J. Biol. Chem.278, 46625–46631.10.1074/jbc.M308553200Suche in Google Scholar PubMed

Cheek, J. and Broderick, J.B. (2001). Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role. J. Biol. Inorg. Chem.6, 209–226.10.1007/s007750100210Suche in Google Scholar PubMed

Cheek, J. and Broderick, J.B. (2002). Direct H atom abstraction from spore photoproduct C-6 initiates DNA repair in the reaction catalyzed by spore photoproduct lyase: evidence for a reversibly generated adenosyl radical intermediate. J. Am. Chem. Soc.124, 2860–2861.10.1021/ja017784gSuche in Google Scholar PubMed

Cicchillo, R.M., Iwig, D.F., Jones, A.D., Nesbitt, N.M., Baleanu-Gogonea, C., Souder, M.G., Tu, L., and Booker, S.J. (2004). Lipoyl synthase requires two equivalents of S-adenosyl-l-methionine to synthesize one equivalent of lipoic acid. Biochemistry43, 6378–6386.10.1021/bi049528xSuche in Google Scholar PubMed

Coomber, S.A., Jones, R.M., Jordan, P.M., and Hunter, C.N. (1992). A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. I. Molecular cloning, transposon mutagenesis and sequence analysis of the gene. Mol. Microbiol.21, 3159–3169.Suche in Google Scholar

Cosper, N.J., Booker, S.J., Ruzicka, F., Frey, P.A., and Scott, R.A. (2000). Direct FeS cluster involvement in generation of a radical in lysine 2,3-aminomutase. Biochemistry39, 15668–15673.10.1021/bi0022184Suche in Google Scholar

Cosper, M.M., Jameson, G.N.L., Davydov, R., Eidsness, M.K., Hoffman, B.M., Huynh, B.H., and Johnson, M.K. (2002). The [4Fe-4S]2+ cluster in reconstituted biotin synthasebinds S-adenosyl-l-methionine. J. Am. Chem. Soc.124, 14006–14007.10.1021/ja0283044Suche in Google Scholar

Dailey, H.A. (2002). Terminal steps of haem biosynthesis. Biochem. Soc. Trans.30, 590–595.10.1042/bst0300590Suche in Google Scholar

DeLano, W.L. (2002). The PyMOL Molecular Graphics System. http://www.pymol.org.Suche in Google Scholar

Duboc-Toia, C., Hassan, A.K., Mulliez, E., Ollagnier-de Choudens, S., Fontecave, M., Leutwein, C., and Heider, J. (2003). Very high-field EPR study of glycyl radical enzymes. J. Am. Chem. Soc.125, 38–39.10.1021/ja026690jSuche in Google Scholar

Escalettes, F., Florentin, D., Tse Sum Bui, B., Lesage, D., and Marquet, A. (1999). Biotin synthase mechanism: evidence for hydrogen transfer from the substrate into deoxyadenosine. J. Am. Chem. Soc.121, 3571–3578.10.1021/ja9811748Suche in Google Scholar

Fang, Q., Peng, J., and Dierks, T. (2004). Posttranslational formylglycine modification of bacterial sulfatases by the radical SAM protein AtsB. J. Biol. Chem.279, 14570–14578.10.1074/jbc.M313855200Suche in Google Scholar

Frankenberg, N., Moser, J., and Jahn, D. (2003). Bacterial heme biosynthesis and its biotechnological application. Appl. Microbiol. Biotechnol.63, 115–127.10.1007/s00253-003-1432-2Suche in Google Scholar

Frey, P.A. and Magnusson, O.T. (2003). S-Adenosylmethionine: a wolf in sheep's clothing, or a rich man's adenosylcobalamin? Chem. Rev.103, 2129–2148.Suche in Google Scholar

Frey, P.A. and Reed, G.H. (2000). Radical mechanisms in adenosylmethionine- and adenosylcobalamin-dependent enzymatic reactions. Arch. Biochem. Biophys.382, 6–14.10.1006/abbi.2000.2010Suche in Google Scholar

Graham, D.E., Xu, H., and White, R.H. (2003). Identification of the 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase required for coenzyme F(420) biosynthesis. Arch. Microbiol.180, 455–464.10.1007/s00203-003-0614-8Suche in Google Scholar

Gruber, K. and Kratky, C. (2002). Coenzyme B12 dependent glutamate mutase. Curr. Opin. Chem. Biol.6, 598–603.10.1016/S1367-5931(02)00368-XSuche in Google Scholar

Guianvarc'h, D., Florentin, D., Tse Sum Bui, B., Nunzi, F., and Marquet, A. (1997). Biotin synthase, a new member of the family of enzymes which uses S-adenosylmethionine as a source of deoxyadenosyl radical. Biochem. Biophys. Res. Commun.236, 402–406.10.1006/bbrc.1997.6952Suche in Google Scholar

Hänzelmann, P. and Schindelin H. (2004). Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. Proc. Natl. Acad. Sci. USA101, 12870–12875.10.1073/pnas.0404624101Suche in Google Scholar

Hänzelmann, P., Hernandez, H.L., Menzel, C., Garcia-Serres, R., Huynh, B.H., Johnson, M.K., Mendel, R.R., and Schindelin, H. (2004). Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis. J. Biol. Chem.279, 34721–34732.10.1074/jbc.M313398200Suche in Google Scholar

Henshaw, T.F., Cheek, J., and Broderick, J.B. (2000). The [4Fe-4S]1+ cluster of pyruvate formate-lyase activating enzyme generates the glycyl radical on pyruvate formate-lyase:EPR-detected single turnover. J. Am. Chem. Soc.122, 8331–8332.10.1021/ja002012qSuche in Google Scholar

Homuth, G., Rompf, A., Schumann, W., and Jahn, D. (1999). Transcriptional control of Bacillus subtilis hemN and hemZ. J. Bacteriol.181, 5922–5929.10.1128/JB.181.19.5922-5929.1999Suche in Google Scholar

Jackson, A.H., Jones, D.M., Philip, G., Lash, T.D., Batlle, A.M., and Smith, S.G. (1980). Synthetic and biosynthetic studies of porphyrins, part IV. Further studies of the conversion of coproporphyrinogen-III to protoporphyrinogen-IX: mass spectrometric investigations of the incubation of specifically deuterated coproporphyrinogen-III with chicken red cell haemolysates. Int. J. Biochem.12, 681–688.Suche in Google Scholar

Jameson, G.N., Cosper, M.M., Hernandez, H.L., Johnson, M.K., and Huynh, B.H. (2004). Role of the [2Fe-2S] cluster in recombinant Escherichia coli biotin synthase. Biochemistry43, 2022–2031.10.1021/bi035666vSuche in Google Scholar

Jarrett, J.T. (2003). The generation of 5′-deoxyadenosyl radicals by adenosylmethionine-dependent radical enzymes. Curr. Opin. Chem. Biol.7, 174–182.10.1016/S1367-5931(03)00022-XSuche in Google Scholar

Keithly, J.H. and Nadler, K.D. (1983). Protoporphyrin formation in Rhizobium japonicum. J. Bacteriol.154, 838–845.10.1128/jb.154.2.838-845.1983Suche in Google Scholar PubMed PubMed Central

Krebs, C., Broderick, W.E., Henshaw, T.F., Broderick, J.B., and Huynh, B.H. (2002). Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: a Mössbauer spectroscopic study. J. Am. Chem. Soc.124, 912–913.10.1021/ja017562iSuche in Google Scholar PubMed

Külzer, R., Pils, T., Kappl, R., Hüttermann, J., and Knappe, J. (1998). Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J. Biol. Chem.273, 4897–4903.10.1074/jbc.273.9.4897Suche in Google Scholar PubMed

Layer, G., Verfürth, K., Mahlitz, E., and Jahn, D. (2002). Oxygen-independent coproporphyrinogen III oxidase from Escherichia coli. J. Biol. Chem.277, 34136–34142.10.1074/jbc.M205247200Suche in Google Scholar

Layer, G., Moser, J., Heinz, D.W., Jahn, D., and Schubert, W.-D. (2003). Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes. EMBO J.22, 6214–6224.10.1093/emboj/cdg598Suche in Google Scholar

Layer, G., Grage, K., Teschner, T., Schünemann, V., Breckau, D., Masoumi, A., Jahn, M., Heathcote, P., Trautwein, A.X., and Jahn, D. (2005). Radical SAM enzyme coproporphyrinogen III oxidase HemN: functional features of the [4Fe-4S] cluster, and the two bound S-adenosyl-l-methionines. J. Biol. Chem.280, 29038–29046.10.1074/jbc.M501275200Suche in Google Scholar

Leonardi, R., Fairhurst, S.A., Kriek, M., Lowe, D.J., and Roach, P.L. (2003). Thiamine biosynthesis in Escherichia coli: isolation and initial characterization of the ThiGH complex. FEBS Lett.539, 95–99.10.1016/S0014-5793(03)00204-7Suche in Google Scholar

Lieb, C., Siddiqui, R.A., Hippler, B., Jahn, D., and Friederich, B. (1998). The Alcaligenes eutrophus hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase is required for heme biosynthesis during anaerobic growth. Arch. Microbiol.169, 52–60.Suche in Google Scholar

Magnusson, O.T., Reed, G.H., and Frey, P.A. (1999). Spectroscopic evidence for the participation of an allylic analogue of the 5′-deoxyadenosyl radical in the reaction of lysine 2,3-aminomutase. J. Am. Chem. Soc.121, 9764–9765.10.1021/ja9925507Suche in Google Scholar

Magnusson, O.T., Reed, G.H., and Frey, P.A. (2001). Characterization of an allylic analogue of the 5′-deoxyadenosyl radical: an intermediate in the reaction of lysine 2,3-aminomutase. Biochemistry40, 7773–7782.10.1021/bi0104569Suche in Google Scholar

Marsh, E.N., Patwardhan, A., and Huhta, M.S. (2004). S-Adenosylmethionine radical enzymes. Bioorg. Chem.32, 326–340.10.1016/j.bioorg.2004.06.001Suche in Google Scholar

Miller, J.R., Busby, R.W., Jordan, S.W., Cheek, J., Henshaw, T.F., Ashley, G.W., Broderick, J.B., Cronan, J.E. Jr., and Marletta, M.A. (2000). Escherichia coli LipA is a lipoyl synthase: in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry39, 15166–15178.10.1021/bi002060nSuche in Google Scholar

Moss, M. and Frey, P.A. (1987). The role of S-adenosylmethionine in the lysine 2,3-aminomutase reaction. J. Biol. Chem.262, 14859–14862.10.1016/S0021-9258(18)48103-3Suche in Google Scholar

Mulliez, E., Padovani, D., Atta, M., Alcouffe, C., and Fontecave, M. (2001). Activation of class III ribonucleotide reductase by flavodoxin: a protein radical-driven electron transfer to the iron-sulfur center. Biochemistry40, 3730–3736.10.1021/bi001746cSuche in Google Scholar PubMed

Nicolet, Y. and Drennan, C.L. (2004). AdoMet radical proteins – from structure to evolution – alignment of divergent protein sequences reveals strong secondary structure element conservation. Nucleic Acids Res.32, 4015–4025.10.1093/nar/gkh728Suche in Google Scholar

Ollagnier, S., Mulliez, E., Schmidt, P.P., Eliasson, R., Gaillard, J., Deronzier, C., Bergman, T., Gräslund, A., Reichard, P., and Fontecave, M. (1997). Activation of the anaerobic ribonucleotide reductase from Escherichia coli. The essential role of the iron-sulfur center for S-adenosylmethionine reduction. J. Biol. Chem.272, 24216–24223.Suche in Google Scholar

Ollagnier, S., Kervio, E., and Retey, J. (1998). The role and source of 5′-deoxyadenosyl radical in a carbon skeleton rearrangement catalyzed by a plant enzyme. FEBS Lett.437, 309–312.10.1016/S0014-5793(98)01258-7Suche in Google Scholar

Ollagnier-de Choudens, S., Sanakis, Y., Hewitson, K.S., Roach, P., Münck, E., and Fontecave, M. (2002). Reductive cleavage of S-adenosylmethionine by biotin synthase from Escherichia coli. J. Biol. Chem.277, 13449–13454.10.1074/jbc.M111324200Suche in Google Scholar PubMed

Padovani, D., Thomas, F., Trautwein, A.X., Mulliez, E., and Fontecave, M. (2001). Activation of class III ribonucleotide reductase from E. coli. The electron transfer from the iron-sulfur center to S-adenosylmethionine. Biochemistry40, 6713–6719.Suche in Google Scholar

Pierrel, F., Hernandez, H.L., Johnson, M.K., Fontecave, M., and Atta, M. (2003). MiaB protein from Thermotoga maritima. Characterization of an extremely thermophilic tRNA-methylthiotransferase. J. Biol. Chem.278, 29515–29524.10.1074/jbc.M301518200Suche in Google Scholar PubMed

Pierrel, F., Douki, T., Fontecave, M., and Atta, M. (2004). MiaB protein is a bifunctional radical S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J. Biol. Chem.279, 47555–47563.10.1074/jbc.M408562200Suche in Google Scholar PubMed

Rebeil, R., Sun, Y., Chooback, L., Pedraza-Reyes, M., Kinsland, C., Begley, T.P., and Nicholson, W.L. (1998). Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. J. Bacteriol.180, 4879–4885.10.1128/JB.180.18.4879-4885.1998Suche in Google Scholar PubMed PubMed Central

Retey, J. (1990). Enzymatic reaction selectivity by negative catalysis or how do enzymes deal with highly reactive intermediates? Angew. Chem. Int. Ed.29, 355–361.10.1002/anie.199003551Suche in Google Scholar

Seehra, J.S., Jordan, P.M., and Akhtar, M. (1983). Anaerobic and aerobic coproporhyrinogen III oxidases of Rhodopseudomonas sphaeroides. Biochem. J.209, 709–718.10.1042/bj2090709Suche in Google Scholar PubMed PubMed Central

Sofia, H.J., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F., and Miller, N.E. (2001). Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res.29, 1097–1106.10.1093/nar/29.5.1097Suche in Google Scholar PubMed PubMed Central

Speranza, G., Buckel, W., and Golding, B.T. (2004). Coenzyme B12-dependent enzymatic dehydration of 1,2-diols: Simple reaction, complex mechanism! J. Porphyrins Phthalocyanines103, 290–300.10.1142/S1088424604000271Suche in Google Scholar

Tait, G.H. (1969). Coproporphyrinogenase activity in extracts from Rhodopseudomonas spheroides. Biochem. Biophys. Res. Commun.37, 116–122.10.1016/0006-291X(69)90888-2Suche in Google Scholar

Tait, G.H. (1972). Coproporphyrinogenase activities in extracts of Rhodopseudomonas spheroides and Chromatium strain D. Biochem. J.128, 1159–1169.10.1042/bj1281159Suche in Google Scholar PubMed PubMed Central

Tamarit, J., Gerez, C., Meier, C., Mulliez, E., Trautwein, A., and Fontecave, M. (2000). The activating component of the anaerobic ribonucleotide reductase from Escherichia coli. An iron-sulfur center with only three cysteines. J. Biol. Chem.275, 15669–15675.10.1074/jbc.275.21.15669Suche in Google Scholar PubMed

Toraya, T. (2003). Radical catalysis in coenzyme B12-dependent isomerization (eliminating) reactions. Chem. Rev.103, 2095–2127.10.1021/cr020428bSuche in Google Scholar PubMed

Troup, B., Hungerer, C., and Jahn, D. (1995). Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase. J. Bacteriol.177, 3326–3331.10.1128/jb.177.11.3326-3331.1995Suche in Google Scholar PubMed PubMed Central

Ugulava, N.B., Sacanell, C.J., and Jarrett, J.T. (2001). Spectroscopic changes during a single turnover of biotin synthase: destruction of a [2Fe-2S] cluster accompanies sulfur insertion. Biochemistry40, 8352–8358.10.1021/bi010463xSuche in Google Scholar PubMed PubMed Central

Van der Donk, W.A., Yu, G., Perez, L., Sanchez, R.J., Stubbe, J., Samano, V., and Robins, M.J. (1998) Detection of a new substrate-derived radical during inactivation of ribonucleotide reductase from Escherichia coli by gemcitabine 5′-diphosphate. Biochemistry37, 6419–6426.10.1021/bi9729357Suche in Google Scholar PubMed

Walsby, C.J., Hong, W., Broderick, W.E., Cheek, J., Ortillo, D., Broderick, J.B., and Hoffman, B.M. (2002a). Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe-4S]+ cluster of pyruvate formate-lyase activating enzyme. J. Am. Chem. Soc.124, 3143–3151.10.1021/ja012034sSuche in Google Scholar PubMed

Walsby, C.J., Ortillo, D., Broderick, W.E., Broderick, J.B., and Hoffman, B.M. (2002b). An anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme. J. Am. Chem. Soc.124, 11270–11271.10.1021/ja027078vSuche in Google Scholar PubMed

Xu, K. and Elliott, T. (1994). Cloning, DNA sequence, and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-independent coproporphyrinogen III oxidase. J. Bacteriol.176, 3196–3203.10.1128/jb.176.11.3196-3203.1994Suche in Google Scholar PubMed PubMed Central

Published Online: 2005-10-12
Published in Print: 2005-10-01

©2005 by Walter de Gruyter Berlin New York

Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.113/html
Button zum nach oben scrollen