Home Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase
Article
Licensed
Unlicensed Requires Authentication

Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase

  • Marina Bennati , Friedhelm Lendzian , Michael Schmittel and Hendrik Zipse
Published/Copyright: October 12, 2005
Biological Chemistry
From the journal Volume 386 Issue 10

Abstract

Ribonucleotide reductases (RNRs) catalyze the production of deoxyribonucleotides, which are essential for DNA synthesis and repair in all organisms. The three currently known classes of RNRs are postulated to utilize a similar mechanism for ribonucleotide reduction via a transient thiyl radical, but they differ in the way this radical is generated. Class I RNR, found in all eukaryotic organisms and in some eubacteria and viruses, employs a diferric iron center and a stable tyrosyl radical in a second protein subunit, R2, to drive thiyl radical generation near the substrate binding site in subunit R1. From extensive experimental and theoretical research during the last decades, a general mechanistic model for class I RNR has emerged, showing three major mechanistic steps: generation of the tyrosyl radical by the diiron center in subunit R2, radical transfer to generate the proposed thiyl radical near the substrate bound in subunit R1, and finally catalytic reduction of the bound ribonucleotide. Amino acid- or substrate-derived radicals are involved in all three major reactions. This article summarizes the present mechanistic picture of class I RNR and highlights experimental and theoretical approaches that have contributed to our current understanding of this important class of radical enzymes.

:

Corresponding author

References

Andersson, M.E., Högbom, M., Rinaldo-Matthis, A., Andersson, K.K., Sjöberg, B.M., and Nordlund, P. (1999). The crystal structure of an azide complex of the diferrous R2 subunit of ribonucleotide reductase displays a novel carboxylate shift with important mechanistic implications for diiron-catalyzed oxygen activation. J. Am. Chem. Soc.121, 2346–2352.10.1021/ja982280cSearch in Google Scholar

Antonello, S., Benassi, R., Gavioli, G., Taddei, F., and Maran, F. (2002). Theoretical and electrochemical analysis of dissociative electron transfers proceeding through formation of loose radical anion species: reduction of symmetrical and unsymmetrical disulfides. J. Am. Chem. Soc.124, 7529–7538.10.1021/ja012545eSearch in Google Scholar

Atkin, C.L., Thelander, L., Reichard, P., and Lang, G. (1973). Iron and free radical in ribonucleotide reductase – exchange of iron and Mössbauer spectroscopy of protein B2 subunit of Escherichia coli enzyme. J. Biol. Chem.248, 7464–7472.10.1016/S0021-9258(19)43313-9Search in Google Scholar

Baik, M.-H., Newcomb, M., Friesner, R.A., and Lippard S.J. (2003). Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem. Rev.103, 2385–2419.10.1021/cr950244fSearch in Google Scholar PubMed

Baldwin, J., Krebs, C., Ley, B.A., Edmondson, D.E., Huynh, B.H., and Bollinger, J.M. (2000). Mechanism of rapid electron transfer during oxygen activation in the R2 subunit of Escherichia coli ribonucleotide reductase. 1. Evidence for a transient tryptophan radical. J. Am. Chem. Soc.122, 12195–12206.Search in Google Scholar

Baldwin, J., Voegtli, W.C., Khidekel, N., Moenne-Lopez, P., Krebs, C., Pereira, A.S., Ley, B.A., Huynh, B.H., Loehr, T.M., Riggs-Gelasco, P.J., et al. (2001). Rational reprogramming of the R2 subunit of Escherichia coli ribonucleotide reductase into a self-hydroxylating monooxygenase. J. Am. Chem. Soc.123, 7017–7030.10.1021/ja002114gSearch in Google Scholar PubMed

Baldwin, J., Krebs, C, Saleh, L., Stelling, M., Huynh, B.H., Bollinger, J.M., and Riggs-Gelasco, P.J. (2003). Structural characterization of the peroxodiiron(III) intermediate generated during oxygen activation by the W48A/D84E variant of ribonucleotide reductase protein R2 from Escherichia coli. Biochemistry42, 13269–1327910.1021/bi035198pSearch in Google Scholar PubMed

Bar, G., Bennati, M., Nguyen, H.H.T., Stubbe, J., and Griffin, R.G. (2001). High-frequency (140 GHz) time domain EPR and ENDOR spectroscopy: the tyrosyl radical-diiron cofactor in ribonucleotide reductase from yeast. J. Am. Chem. Soc.123, 3569–3576.10.1021/ja003108nSearch in Google Scholar PubMed

Bennati, M., Farrar, C.T., Bryant, J.A., Inati, S.J., Weis, V., Gerfen, G.J., Riggs-Galesco, P., Stubbe, J., and Griffin, R.G. (1999). Pulsed electron-nuclear double resonance (ENDOR) at 140 GHz. J. Magn. Reson.138, 232–243.10.1006/jmre.1999.1727Search in Google Scholar PubMed

Bennati, M., Stubbe, J., and Griffin, R.G. (2001). High-frequency EPR and ENDOR: time-domain spectroscopy of ribonucleotide reductase. Appl. Magn. Res.21, 389–410.10.1007/BF03162416Search in Google Scholar

Bennati, M., Weber, A., Antonic, J., Perlstein, D.L., Robblee, J., and Stubbe, J. (2003). Pulsed ELDOR spectroscopy measures the distance between the two tyrosyl radicals in the R2 subunit of the E. coli ribonucleotide reductase. J. Am. Chem. Soc.125, 14988–14989.10.1021/ja0362095Search in Google Scholar PubMed

Bennati, M., Robblee, J.H., Mugnaini, V., Stubbe, J., Freed, J., and Borbat, P. (2005). EPR distance measurements support a model for long range radical initiation. J. Am. Chem. Soc., in press.Search in Google Scholar

Bleifuß, G., Kolberg, M., Pötsch, S., Hofbauer, W., Bittl, R., Lubitz, L., Gräslund, A., Lassmann, G., and Lendzian, F. (2001). Tryptophan and tyrosyl radicals in ribonucleotide reductase: a comparative high-field EPR study at 94 GHz. Biochemistry40, 15362–15368.10.1021/bi010707dSearch in Google Scholar

Bollinger, J.M. Jr., Edmondson, D.E., Huynh, B.H., Filley, J., Norton, J.R., and Stubbe, J. (1991). Mechanism of assembly of the tyrosyl radical-dinuclear iron cluster cofactor of ribonucleotide reductase. Science253, 292–298.10.1126/science.1650033Search in Google Scholar

Bollinger, J.M. Jr., Tong, W.H., Ravi, N., Huynh, B.H., Edmondson, D.E., and Stubbe, J. (1994a). Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of E. coli ribonucleotide reductase. 2. Kinetics of the excess Fe2+ reaction by optical, EPR, and Mössbauer spectroscopies. J. Am. Chem. Soc.116, 8015–8023.10.1021/ja00097a008Search in Google Scholar

Bollinger, J.M. Jr., Tong, W.H., Ravi, N., Huynh, B.H., Edmondson, D.E., and Stubbe, J. (1994b). Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of E. coli ribonucleotide reductase. 3. Kinetics of the limiting Fe2+ reaction by optical, EPR, and Mössbauer spectroscopies. J. Am. Chem. Soc.116, 8024–8032.10.1021/ja00097a009Search in Google Scholar

Cerqueira, N.M.F.S.A., Fernandes, P.A., Eriksson, L.A., and Ramos, M.J. (2004a). Ribonucleotide activation by enzyme ribonucleotide reductase: understanding the role of the enzyme. J. Comp. Chem.25, 2031–2037.10.1002/jcc.20127Search in Google Scholar

Cerqueira, N.M.F.S.A., Fernandes, P.A., Eriksson, L.A., and Ramos, M.J. (2004b). New insights into a critical biological control step of the mechanism of ribonucleotide reductase. J. Mol. Struct. Theochem.709, 53–65.10.1016/j.theochem.2003.10.073Search in Google Scholar

Chang, M.C.Y., Yee, C.S., Stubbe, J., and Nocera, D.G. (2004). Turning on ribonucleotide reductase by light-initiated amino acid radical generation. Proc. Natl. Acad. Sci. USA101, 6882–6887.10.1073/pnas.0401718101Search in Google Scholar

Climent, I., Sjöberg, B.-M., and Huang, C.Y. (1991). Carboxyl-terminal peptides as probes for E. coli ribonucleotide reductase subunit interaction: kinetic analysis of inhibition studies. Biochemistry30, 5164–5171.Search in Google Scholar

Climent, I., Sjöberg, B.-M., and Huang, C.Y. (1992). Site-directed mutagenesis and deletion of the carboxyl terminus of E. coli ribonucleotide reductase protein R2. Effects on catalytic activity and subunit interaction. Biochemistry31, 4801–4807.Search in Google Scholar

Covès, J., de Fallois, L.L.H., Le Pape, L., Décout, J.-L., and Fontecave, M. (1996). Inactivation of Escherichia coli ribonucleotide reductase by 2′-deoxy-2′-mercaptouridine 5′-diphos-phate. Electron paramagnetic resonance evidence for a transient protein perthiyl radical. Biochemistry35, 8595–8602.Search in Google Scholar

Denysenkov, V., Prisner, T.F., Stubbe, J., and Bennati, M. (2005). High frequency 180 GHz PELDOR. Appl. Magn. Reson., in press.10.1007/BF03167024Search in Google Scholar

Dong, Y. and Que, L. Jr. (1995). An exchange-coupled complex with localized high-spin FeIV and FeIII sites of relevance to cluster X of Escherichia coli ribonucleotide reductase. J. Am. Chem. Soc.117, 11377–11378.10.1021/ja00150a051Search in Google Scholar

Ehrenberg, A. and Reichard, P. (1972). Electron-spin resonance of iron-containing protein B2 from ribonucleotide reductase. J. Biol. Chem.247, 3485–3488.10.1016/S0021-9258(19)45166-1Search in Google Scholar

Ekberg, M., Sahlin, M., Eriksson, M., and Sjöberg, B.-M. (1996). Two conserved tyrosine residues in protein R1 participate in an intermolecular electron transfer in ribonucleotide reductase. J. Biol. Chem.271, 20655–20659.10.1074/jbc.271.34.20655Search in Google Scholar

Ekberg, M., Pötsch, S., Sandin, E., Thunnissen, M., Nordlund, P., Sahlin, M., and Sjöberg, B.-M. (1998). Preserved catalytic activity in an engineered ribonucleotide reductase R2 protein with a nonphysiological radical transfer pathway. J. Biol. Chem.272, 21003–21008.10.1074/jbc.273.33.21003Search in Google Scholar

Eklund, E., Uhlin, U., Farnegardh, M., Logan, D.T., and Nordlund, P. (2001). Structure and function of the radical enzyme ribonucleotide reductase. Prog. Biophys. Mol. Biol.77, 177–268.10.1016/S0079-6107(01)00014-1Search in Google Scholar

Engström, M., Himo, F., Gräslund, A., Minaev, B., Vahtras, O., and Agren, H. (2000). Hydrogen bonding to tyrosyl radical analyzed by ab initio g-tensor calculations. J. Phys. Chem. A104, 5149–5153.10.1021/jp0006633Search in Google Scholar

Eriksson, M., Uhlin, U., Ramaswamy, S., Ekberg, M., Regnstrom, K., Sjöberg, B.-M., and Eklund, H. (1997). Binding of allosteric effectors to ribonucleotide reductase protein R1: reduction of active-site cysteines promotes substrate binding. Structure5, 1077–1092.10.1016/S0969-2126(97)00259-1Search in Google Scholar

Fernandes, P.A. and Ramos, M.J. (2003). Theoretical studies on the mode of inhibition of ribonucleotide reductase by 2′-substituted substrate analogues. Chem. Eur. J.9, 5916–5925.10.1002/chem.200304948Search in Google Scholar

Fontecave, M. (1998). Ribonucleotide reductases and radical reactions. Cell. Mol. Life Sci.54, 684–695.10.1007/s000180050195Search in Google Scholar

Fontecave, M., Mulliez, E., and Logan, D.T. (2002). Deoxyribonucleotide synthesis in anaerobic microorganisms: the class III ribonucleotide reductase. Prog. Nucleic Acid Res.72, 95–127.10.1016/S0079-6603(02)72068-0Search in Google Scholar

Fritscher, J., Artin, E., Wnuk, S., Bar, G., Robblee, J.H., Kacprzak, S., Kaupp, M., Griffin, R.G., Bennati, M., and Stubbe, J. (2005). Structure of the nitrogen-centered radical formed during inactivation of E. coli ribonucleotide reductase by 2′-azido-2′-deoxyuridine-5′-diphosphate: trapping of the 3′-ketonucleotide. J. Am. Chem. Soc.127, 7729–7738.Search in Google Scholar

Ge, J., Yu, G., Ator, M.A., and Stubbe. J. (2003). Pre-steady-state and steady-state kinetic analysis of E. coli class I ribonucleotide reductase. Biochemistry42, 10071–10083.Search in Google Scholar

Gerfen, G.J., Bellew, B.F., Un, S., Bollinger, J.M. Jr., Stubbe, J., Griffin, R.G., and Singel, D.J. (1993). High-frequency EPR spectroscopy of the tyrosyl radical in E. coli ribonucleotide reductase. J. Am. Chem. Soc.115, 6420–6421.10.1021/ja00067a071Search in Google Scholar

Gerfen, G.J., van der Donk, W.A., Yu, G., McCarthy, J.R., Jarvi, E.T., Matthews, D.P., Farrar, C., Griffin, R.G., and Stubbe, J. (1998). Characterization of a substrate-derived radical detected during the inactivation of ribonucleotide reductase from Escherichia coli by 2′-fluoromethylene-2′-deoxycytidine 5′-diphosphate. J. Am. Chem. Soc.120, 3823–3835.10.1021/ja972166eSearch in Google Scholar

Harris, G., Ator, M., and Stubbe, J. (1984). Mechanism of inactivation of Escherichia coli and Lactobacillus leichmannii ribonucleotide reductases by 2′-chloro-2′-deoxynucleotides: evidence for generation of 2-methylene-3(2H)-furanone. Biochemistry23, 5214–5225.10.1021/bi00317a020Search in Google Scholar

Han, W.G., Lovell, T., Liu, T., and Noodleman, L. (2004). Density functional study of a μ-1,1-carboxylate bridged Fe(III)-O-Fe(IV) model complex. 2. Comparison with ribonucleotide reductase intermediate X. Inorg. Chem.43, 613–621.Search in Google Scholar

Himo, H., Gräslund, A., and Eriksson, L.A., (1997). Density functional calculations on model tyrosyl radicals. Biophys. J.72, 1556–1567.10.1016/S0006-3495(97)78803-9Search in Google Scholar

Hoffman, M.Z. and Hayon, E. (1972). One-electron reduction of disulfide linkage in aqueous-solution – formation, protonation, and decay kinetics of RSSR-radical. J. Am. Chem. Soc.94, 7950–7957.10.1021/ja00778a002Search in Google Scholar

Hoganson, C.W., Sahlin, M., Sjöberg, B.-M., and Babcock, G.T. (1996). Electron magnetic resonance of the tyrosyl radical in ribonucleotide reductase from E. coli. J. Am. Chem. Soc.118, 4672–4679.10.1021/ja953979aSearch in Google Scholar

Högbom, M., Galander, M., Andersson, M., Kolberg, M., Hofbauer, W., Lassmann, G., Nordlund, P., and Lendzian, F. (2003). Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1.4-Å X-ray data. Proc. Natl. Acad. Sci. USA100, 3209–3214.10.1073/pnas.0536684100Search in Google Scholar

Högbom, M., Stenmark, P., Voevodskaya, N., McClarty, G., Gräslund, A., and Nordlund, P. (2004). The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass. Science305, 245–248.10.1126/science.1098419Search in Google Scholar

Jeschke, G. (2002). Determination of the nanostructure of polymer materials by electron paramagnetic resonancespectroscopy. Macromol. Rapid Commun.23, 227–246.10.1002/1521-3927(20020301)23:4<227::AID-MARC227>3.0.CO;2-DSearch in Google Scholar

Kashlan, O.B. and Cooperman, B.S. (2003). Comprehensive model for allosteric regulation of mammalian ribonucleotide reductase: refinements and consequences. Biochemistry42, 1696–1706.10.1021/bi020634dSearch in Google Scholar

Kasrayan, A., Persson, A.L., Sahlin, M., and Sjöberg, B.M. (2002). The conserved active site asparagine in class I ribonucleotide reductase is essential for catalysis. J. Biol. Chem.277, 5749–5755.10.1074/jbc.M106538200Search in Google Scholar

Kolberg, M., Strand, K.R., and Andersson, K.K. (2004). Structure, function and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta1699, 1–34.10.1016/S1570-9639(04)00054-8Search in Google Scholar

Kolberg, M., Logan, D.T., Bleifuss, G., Pötsch, S., Sjöberg, B.-M., Gräslund, A., Lubitz, W., Lassmann, G., and Lendzian, F. (2005). A new tyrosyl radical on Phe208 as ligand to the diiron center in Escherichia coli ribonucleotide reductase, mutant Y122H. J. Biol. Chem.280, 11233–11246.10.1074/jbc.M414634200Search in Google Scholar

Krebs, C., Chen, S., Baldwin, J., Ley, B.A., Patel, U., Edmondson, D.E., Huynh, B.H., and Bollinger, J.M. Jr. (2000). Mechanism of rapid electron transfer during oxygen activation in the R2 subunit of Escherichia coli ribonucleotide reductase. 2. Evidence for and consequences of blocked electron transfer in the W48F variant. J. Am. Chem. Soc.122, 12207–12219.Search in Google Scholar

Lal, M., Langels, A., Deiseroth, H.-J., Schlirf, J., and Schmittel, M. (2003). Role of hydrogen bonding in the oxidation potential of enols. J. Phys. Org. Chem.16, 373–379.10.1002/poc.650Search in Google Scholar

Lawrence, C.C., Bennati, M., Obias, H.V., Bar, G., Griffin, R.G., and Stubbe, J. (1999). High-field EPR detection of a disulfide radical anion in the reduction of cytidine 5′-diphosphate by the E441Q R1 mutant of Escherichia coli ribonucleotide reductase. Proc. Natl. Acad. Sci. USA96, 8979–8984.10.1073/pnas.96.16.8979Search in Google Scholar

Lendzian, F. (2005). Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy. Biochim. Biophys. Acta1707, 67–90.10.1016/j.bbabio.2004.02.011Search in Google Scholar

Lendzian, F., Sahlin, M., MacMillan, F., Bittl, R., Fiege, R., Pötsch, S., Sjöberg, B.-M., Gräslund, A., Lubitz, W., and Lassmann, G. (1996). Electronic structure of neutral tryptophan radicals in ribonucleotide reductase studied by EPR and ENDOR spectroscopy. J. Am. Chem. Soc.118, 8111–8120.10.1021/ja960917rSearch in Google Scholar

Lenz, R. and Giese, B. (1997). Studies on the mechanism of ribonucleotide reductases. J. Am. Chem. Soc.119, 2784–2794.10.1021/ja962974qSearch in Google Scholar

Licht, S., Gerfen, G.J., and Stubbe, J. (1996). Thiyl radicals in ribonucleotide reductases. Science271, 477–481.10.1126/science.271.5248.477Search in Google Scholar

Ling J., Sahlin M., Sjöberg, B.M., Loehr, T.M., and Sanders-Loehr, J. (1994). Dioxygen is the source of the μ-oxo bridge in iron ribonucleotide reductase. J. Biol. Chem.269, 5595–5601.10.1016/S0021-9258(17)37503-8Search in Google Scholar

Liu, A., Sahlin, M., Pötsch, S., Sjöberg, B.-M., and Gräslund, A. (1998). New paramagnetic species formed at the expense of the transient tyrosyl radical in mutant protein R2 F208Y of Escherichia coli ribonucleotide reductase. Biochem. Biophys. Res. Commun.246, 740–745.10.1006/bbrc.1998.8701Search in Google Scholar PubMed

Liu, A.M., Barra, A.L., Rubin, H., Lu, G.Z., and Gräslund, A. (2000). Heterogeneity of the local electrostatic environment of the tyrosyl radical in Mycobacterium tuberculosis ribonucleotide reductase observed by high-field electron paramagnetic resonance. J. Am. Chem. Soc.122, 1974–1978.10.1021/ja990123nSearch in Google Scholar

Logan, D.T., DeMare, F., Persson, B.O., Slaby, A., Sjöberg, B.-M., and Nordlund, P. (1998). Crystal structures of two self-hydroxylating ribonucleotide reductase protein R2 mutants: structural basis for the oxygen-insertion step of hydroxylation reactions catalyzed by diiron proteins. Biochemistry37, 10798–10807.10.1021/bi9806403Search in Google Scholar PubMed

Lycksell, P.-O. and Sahlin, M. (1995). Demonstration of segmental mobility in the functionally essential carboxyl terminal part of ribonucleotide reductase protein R2 from E. coli. FEBS Lett.368, 441–444.Search in Google Scholar

Lycksell, P.-O., Ingemarson, R., Davis, R., Gräslund, A., and Thelander, L. (1994). 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1. Biochemistry33, 2838–2842.10.1021/bi00176a013Search in Google Scholar PubMed

Lynch, B.J., Fast, P.L., Harris, M., and Truhlar, D.G. (2000). Adiabatic connection for kinetics. J. Phys. Chem. A104, 4811–4815.10.1021/jp000497zSearch in Google Scholar

Mao, S.S., Holler, T.P., Yu, G.X., Bollinger, J.M. Jr., Johnston, M.I., and Stubbe, J. (1992a). A model for the role of multiple cysteine residues involved in ribonucleotide reduction: amazing and still confusing. Biochemistry31, 9733–9743.10.1021/bi00155a029Search in Google Scholar PubMed

Mao, S.S., Holler, T.P., Bollinger, J.M. Jr., Yu, G.X., Johnston, M.I., and Stubbe, J. (1992b). Interaction of C225SR1 mutant subunit of ribonucleotide reductase with R2 and nucleoside diphosphates: tales of a suicidal enzyme. Biochemistry31, 9744–9751.10.1021/bi00155a030Search in Google Scholar PubMed

Mao, S.S., Yu, G.X., Chalfoun, D., and Stubbe, J. (1992c). Characterization of C439SR1, a mutant of Escherichia coli ribonucleotide diphosphate reductase: evidence that C439 is a residue essential for nucleotide reduction and C439SR1 is a protein possessing novel thioredoxin-like activity. Biochemistry31, 9752–9759.10.1021/bi00155a031Search in Google Scholar PubMed

Mezyk, S.P. and Armstrong, D.A. (1999). Disulfide anion radical equilibria: Effects of -NH3+, -CO2-, -NHC(O)- and -CH3 groups. J. Chem. Soc. Perkin Trans.2, 1411–1419.10.1039/a901155bSearch in Google Scholar

Mezzetti, A., Maniero, A.L., Brustolon, M., Giacometti, G., and Brunel, L.C. (1999). A tyrosyl radical in an irradiated single crystal of N-acetyl-L-tyrosine studied by X-band cw-EPR, high-frequency EPR, and ENDOR spectroscopies. J. Phys. Chem. A103, 9636–9643.10.1021/jp9903763Search in Google Scholar

Miller, M.A., Gobena, F.T., Kauffmann, K., Munck, E., Que, L., and Stankovich, M.T. (1999). Differing roles for the diiron clusters of ribonucleotide reductase from aerobically grown Escherichia coli in the generation of the Y122 radical. J. Am. Chem. Soc.121, 1096–1097.10.1021/ja9826845Search in Google Scholar

Milov, A.D., Maryasov, A.G., and Tsvetkov, Y.D. (1998). Pulsed electron double resonance (PELDOR) and its application in free-radicals research. Appl. Magn. Reson.15, 107–143.10.1007/BF03161886Search in Google Scholar

Moenne-Loccoz, P., Baldwin, J., Ley, B.A., Loehr, T.M., and Bollinger, J.M. Jr. (1998). O2 activation by non-heme diiron proteins: identification of a symmetric 1,2-peroxide in a mutant of ribonucleotide reductase. Biochemistry37, 14659–14663.10.1021/bi981838qSearch in Google Scholar

Mohr, M. and Zipse, H. (1999). C-H bond activation in ribonucleotide reductases – do short strong hydrogen bonds play a role? Chem. Eur. J.5, 3046–3054.10.1002/(SICI)1521-3765(19991001)5:10<3046::AID-CHEM3046>3.0.CO;2-JSearch in Google Scholar

Nielsen, B.B., Kauppi, B., Thelander, M., Thelander, L., Larsen, I.K., and Eklund, H. (1995). Crystallization and crystallographic investigations of the small subunit of mouse ribonucleotide reductase. FEBS Lett.373, 310–312.10.1016/0014-5793(95)01067-OSearch in Google Scholar

Nordlund, P. and Eklund, H. (1993). Structure and function of the Escherichia coli ribonucleotide reductase protein R2 J. Mol. Biol.232, 123–164.10.1006/jmbi.1993.1374Search in Google Scholar

Nordlund, P., Sjöberg, B.-M., and Eklund, H. (1990). Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature345, 593–598.10.1038/345593a0Search in Google Scholar

Oelgemöller, M., Griesbeck, A.G., Lex, J., Haeuseler, A., Schmittel, M., Niki, M., Hesek, D., and Inoue, Y. (2001). Structural, CV and IR spectroscopic evidences for preorientation in PET-active phthalimido carboxylic acids. Org. Lett.3, 1593–1596.10.1021/ol0155900Search in Google Scholar

Oelgemöller, M., Haeuseler, A., Schmittel, M., Griesbeck, A.G., Lex, J., and Inoue, Y. (2002). Hydrogen bonding in phthalimido carboxylic acids: cyclic voltammetric study and correlation with photochemical reactivity. Part 2. Aliphatic and aromatic acids. J. Chem. Soc. Perkin Trans.2, 676–686.Search in Google Scholar

Pelmenschikov, V., Cho, K.-B., and Siegbahn, P.E.M. (2004). Class I ribonucleotide reductase revisited: the effect of removing a proton on Glu441. J. Comp. Chem.25, 311–321.10.1002/jcc.10389Search in Google Scholar

Pereira, S., Fernandes, P.A., and Ramos, M.J. (2003). Theoretical study of ribonucleotide reductase mechanism-based inhibition by 2-azido-2-deoxyribonucleoside 5-diphosphates. J. Comp. Chem.25, 227–237.Search in Google Scholar

Pereira, S., Fernandes, P.A., and Ramos, M.J. (2005). Theoretical study on the inhibition of ribonucleotide reductase by 2′-mercapto-2′-deoxyribonucleoside-5′-diphosphates. J. Am. Chem. Soc.127, 5174–5179.10.1021/ja046662wSearch in Google Scholar

Persson, A.L., Eriksson, M., Katterle, B., Pötsch, S., Sahlin, M., and Sjöberg, B.M. (1997). A new mechanism-based radical intermediate in a mutant R1 protein affecting the catalytically essential Glu(441) in Escherichia coli ribonucleotide reductase. J. Biol. Chem.272, 31533–31541.10.1074/jbc.272.50.31533Search in Google Scholar

Persson, A.L., Sahlin, M., and Sjöberg, B.M. (1998). Cysteinyl and substrate radical formation in active site mutant E441Q of Escherichia coli class I ribonucleotide reductase. J. Biol. Chem.273, 31016–312020.10.1074/jbc.273.47.31016Search in Google Scholar

Pötsch, S., Lendzian, F., Ingemarson, R., Hornberg, A., Thelander, L., Lubitz, W., Lassmann, G., and Gräslund, A. (1999). The iron-oxygen reconstitution reaction in protein R2 tyr-177 mutants of mouse ribonucleotide reductase – EPR and electron nuclear double resonance studies on a new transient tryptophan radical. J. Biol. Chem.274, 17696–17704.10.1074/jbc.274.25.17696Search in Google Scholar

Ravi, N., Bollinger, J.M., Huynh, B.H., Edmondson, D.E., and Stubbe, J. (1994). Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of Escherichia coli. 1. Mössbauer characterization of the diferric radical precursor. J. Am. Chem. Soc.116, 8007–8014.Search in Google Scholar

Reichard, P. (1993). From RNA to DNA, why so many ribonucleotide reductases? Science260, 1773–1777.10.1126/science.8511586Search in Google Scholar

Riggs-Gelasco, P.J., Shu, L., Chen, S., Burdi, D., Huynh, B.H., Que, L. Jr., and Stubbe, J.A. (1998). EXAFS characterization of the intermediate X generated during the assembly of the Escherichia coli ribonucleotide reductase R2 diferric tyrosyl radical cofactor. J. Am. Chem. Soc.120, 849–860.10.1021/ja9718230Search in Google Scholar

Robins, M.J., Wnuk, S.F., Hernandez-Thirring, A.E., and Samano, M.C. (1996). Nucleic acid related compounds. 91. Biomimetic reactions are in harmony with loss of 2′-substituents as free radicals (not anions) during mechanism-based inactivation of ribonucleotide reductases. Differential interactions of azide, halogen, and alkylthio groups with tributylstannane and triphenylsilane. J. Am. Chem. Soc.118, 11341–11348.Search in Google Scholar

Robins, M.J., Guo, Z., Samano, M.C., and Wnuk, S.F. (1999). Biomimetic simulation of free radical-initiated cascade reactions postulated to occur at the active site of ribonucleotide reductases. J. Am. Chem. Soc.121, 1425–1433.10.1021/ja983449pSearch in Google Scholar

Röck, M. and Schmittel, M. (1993). Controlled oxidation of enolates to α-carbonyl radicals and α-carbonyl cations. J. Chem. Soc. Chem. Commun.1993, 1739–1741.10.1039/C39930001739Search in Google Scholar

Rova, U., Adrait, A., Pötsch, S., Gräslund, A., and Thelander, L. (1999). Evidence by mutagenesis that Tyr370 of the mouse ribonucleotide reductase R2 protein is the connecting link in the intersubunit radical transfer pathway. J. Biol. Chem.274, 23746–23751.10.1074/jbc.274.34.23746Search in Google Scholar

Sahlin, M., Sjöberg, B.-M., Backes, G., Loehr, T., and Sanders-Loehr, J. (1990). Activation of the iron-containing B2-protein of ribonucleotide reductase by hydrogen-peroxide. Biochem. Biophys. Res. Commun.167, 813–818.10.1016/0006-291X(90)92098-KSearch in Google Scholar

Salowe, S., Bollinger, J.M. Jr., Ator, M., and Stubbe, J. (1993). Alternative model for mechanism-based inhibition of Escherichia coli ribonucleotide reductase by 2′-azido-Y-deoxyuridine 5′-diphosphate. Biochemistry32, 12749–12760.10.1021/bi00210a026Search in Google Scholar PubMed

Schmidt, P.P., Andersson, K.K., Barra, A.L., Thelander, L., and Gräslund, A. (1996). High field EPR studies of mouse ribonucleotide reductase indicate hydrogen bonding of the tyrosyl radical. J. Biol. Chem.271, 23615–23518.10.1074/jbc.271.39.23615Search in Google Scholar PubMed

Schmittel, M. (1994). Umpolung of ketones via enol radical cations. Top. Curr. Chem.169, 183–230.10.1007/3-540-57565-0_76Search in Google Scholar

Schmittel, M. and Ghorai, M.K. (2001). Reactivity patterns of radical ions – a unifying picture of radical-anion and radical-cation transformations. In: Electron Transfer in Chemistry, Vol. 2, V. Balzani, ed. (Weinheim, Germany: Wiley-VCH), pp. 5–54.10.1002/9783527618248.ch15Search in Google Scholar

Scott, C.P., Kashlan, O.B., Lear, J.D., and Cooperman, B.S. (2001). A quantitative model for allosteric control of purine reduction by murine ribonucleotide reductase. Biochemistry40, 1651–1661.10.1021/bi002335zSearch in Google Scholar PubMed

Siegbahn, P.E.M. (1998). Theoretical study of the substrate mechanism of ribonucleotide reductase. J. Am. Chem. Soc.120, 8417–8429.10.1021/ja9736065Search in Google Scholar

Siegbahn, P.E.M. (1999). Theoretical model studies of the iron dimer complex of MMO and RNR. Inorg. Chem.38, 2880–2889.10.1021/ic981332wSearch in Google Scholar PubMed

Siegbahn, P.E.M., Eriksson, L., Himo, F., and Pavlov, M. (1998). Hydrogen atom transfer in ribonucleotide reductase (RNR). J. Phys. Chem. B102, 10622–10629.10.1021/jp9827835Search in Google Scholar

Sjöberg, B.-M. (1997). Ribonucleotide reductases – a group of enzymes with different metallosites and a similar reaction mechanism. Struct. Bond.88, 139–173.10.1007/3-540-62870-3_5Search in Google Scholar

Sjöberg, B.-M., Gräslund, A., and Eckstein, F. (1983). A substrate radical intermediate in the reaction between ribonucleotide reductase from E. coli and 2′-azido-2′-deoxynucleoside diphosphates. J. Biol. Chem.258, 8060–8067.Search in Google Scholar

Sommerhalter, M., Voegtli, W.C., Perlstein, D.L., Ge, J., Stubbe, J., and Rosenzweig, A.C. (2004). Structures of the yeast ribonucleotide reductase Rnr2 and Rnr4 homodimers. Biochemistry43, 7736–7742.10.1021/bi049510mSearch in Google Scholar PubMed

Steenken, S., Davies, M.J., and Gilbert, B.C. (1986). Pulse-radiolysis and electron spin-resonance studies of the dehydration of radicals from 1,2-diols and related-compounds. J. Chem. Soc. Perkin Trans.2, 1003–1010.10.1039/p29860001003Search in Google Scholar

Strand, K.R., Karlsen, S., Kolberg, M., Rohr, A.K., Görbitz, C.H., and Andersson, K.K. (2004). Crystal structural studies of changes in the native dinuclear iron center of ribonucleotide reductase protein R2 from mouse. J. Biol. Chem.279, 46794.10.1074/jbc.M407346200Search in Google Scholar PubMed

Stubbe, J. (1989). Protein radical involvement in biological catalysis? Annu. Rev. Biochem.58, 257–285.10.1146/annurev.bi.58.070189.001353Search in Google Scholar PubMed

Stubbe, J. and Ackles, D. (1980). On the mechanism of ribonucleoside diphosphate reductase from Escherichia-coli– evidence for 3′-C-H bond-cleavage. J. Biol. Chem.255, 8027–8030.10.1016/S0021-9258(19)70598-5Search in Google Scholar

Stubbe, J. and van der Donk, W.A. (1998). Protein radicals in enzyme catalysis. Chem. Rev.98, 705–762.10.1021/cr9400875Search in Google Scholar

Stubbe, J., Ator, M., and Krenitsky, T. (1983). Mechanism of ribonucleoside diphosphate reductase from Escherichia-coli– evidence for 3′-C-H bond-cleavage. J. Biol. Chem.258, 1625–1631.10.1016/S0021-9258(18)33031-XSearch in Google Scholar

Stubbe, J., Nocera, D.G., Yee, C.S., and Chang, M.C.Y. (2003). Radical initiation in the class I ribonucleotide reductase: Long-range proton-coupled electron transfer? Chem. Rev.103, 2167–2201.Search in Google Scholar

Sturgeon, B.E., Burdi, D., Chen, S.X., Huynh, B.H., Edmondson, D.E., Stubbe, J., and Hoffman, B.M. (1996). Reconsideration of X, the diiron intermediate formed during cofactor assembly in E. coli ribonucleotide reductase. J. Am. Chem. Soc.118, 7551–7557.10.1021/ja960399kSearch in Google Scholar

Thelander, L. (1973). Physicochemical characterization of ribonucleoside diphosphate reductase from E. coli. J. Biol. Chem.248, 4531–4601.Search in Google Scholar

Thelander, L., Larsson, B., Hobbs, J., and Eckstein, F. (1976). Active site of ribonucleoside diphosphate reductase from E. coli. Inactivation of the enzyme by 2′-substituted ribonucleoside diphosphates. J. Biol. Chem.251, 1398–1405.Search in Google Scholar

Tong, W.H., Chen, S., Lloyd, S.G., Edmondson, D.E., Huynh, B.H., and Stubbe, J. (1996). Mechanism of assembly of the diferric cluster-tyrosyl radical cofactor of Escherichia coli ribonucleotide reductase from the diferrous form of the R2 subunit. J. Am. Chem. Soc.118, 2107–2108.10.1021/ja952764ySearch in Google Scholar

Uhlin, U. and Eklund, H. (1994). Structure of ribonucleotide reductase protein R1. Nature370, 533–539.10.1038/370533a0Search in Google Scholar PubMed

Un, S., Gerez, C., Elleingand, E., and Fontecave, M. (2001). Sen sitivity of tyrosyl radical g-values to changes in protein structure: a high-field EPR study of mutants of ribonucleotide reductase. J. Am. Chem. Soc.123, 3048–3054.10.1021/ja003650bSearch in Google Scholar PubMed

van Dam, P.J., Willems, J.P., Schmidt, P.P., Pötsch, S., Barra, A.L., Hagen, W.R., Hoffman, B.M., Andersson, K.K., and Gräslund, A. (1998). High-frequency EPR and pulsed Q-band ENDOR studies on the origin of the hydrogen bond in tyrosyl radicals of ribonucleotide reductase R2 proteins from mouse and herpes simplex virus type 1. J. Am. Chem. Soc.120, 5080–5085.Search in Google Scholar

van der Donk, W.A., Stubbe, J., Gerfen, G.J., Bellew, B.F., and Griffin, R.G. (1995). EPR investigations of the inactivation of E. coli ribonucleotide reductase with 2′-azido-2′-deoxyuridine 5′-diphosphate: evidence for the involvement of the thiyl radical of C225-R1. J. Am. Chem. Soc.117, 8908–8916.Search in Google Scholar

van der Donk, W.A., Yu, G., Silva, D.J., Stubbe, J., McCarthy, J.R., Jarvi, E.T., Matthews, D.P., Resvick, R.J., and Wagner, E. (1996). Inactivation of ribonucleotide reductase by (E)-2′-fluoromethylene-2′-deoxycytidine 5′-diphosphate: a paradigm for nucleotide mechanism-based inhibitors. Biochemistry35, 8381–8391.10.1021/bi960190jSearch in Google Scholar PubMed

van der Donk, W.A., Gerfen, G.J., and Stubbe, J. (1998). Direct EPR spectroscopic evidence for an allylic radical generated from (E)-2′-fluoromethylene-2′-deoxycytidine 5′-diphosphate by E. coli ribonucleotide reductase. J. Am. Chem. Soc.120, 4252–4253.10.1021/ja9740273Search in Google Scholar

Voegtli, W.C., Ge, J., Perlstein, D.L., Stubbe, J., and Rosen-zweig, A.C. (2001). Structure of the yeast ribonucleotide reductase Y2Y4 heterodimer. Proc. Natl. Acad. Sci. USA98, 10073–10078.10.1073/pnas.181336398Search in Google Scholar PubMed PubMed Central

Voevodskaya, N., Lendzian, F., and Gräslund, A. (2005). A stable FeIII-FeIV replacement of tyrosyl radical in a class I ribonucleotide reductase. Biochem. Biophys. Res. Commun.330, 1213–1216.10.1016/j.bbrc.2005.03.104Search in Google Scholar PubMed

Yun, D., Krebs, C., Gupta, G.P., Iwig, D.F., Huynh, B.H., and Bollinger, J.M. Jr. (2002). Facile electron transfer during formation of cluster X and kinetic competence of X for tyrosyl radical production in protein R2 of ribonucleotide reductase from mouse. Biochemistry41, 981–990.10.1021/bi011797pSearch in Google Scholar PubMed

Zipse, H. (1995). The addition of water to ethylene and trans-butene radical-cation – model systems for the reaction of alkene radical cations with nucleophiles. J. Am. Chem. Soc.117, 11798–11806.10.1021/ja00152a023Search in Google Scholar

Zipse, H. (2003). The influence of hydrogen bonding interactions on the C-H bond activation step in class I ribonucleotide reductases. Org. Biomol. Chem.1, 692–699.10.1039/b210536pSearch in Google Scholar PubMed

Published Online: 2005-10-12
Published in Print: 2005-10-01

©2005 by Walter de Gruyter Berlin New York

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.117/html
Scroll to top button