Degradation of the sodium taurocholate cotransporting polypeptide (NTCP) by the ubiquitin-proteasome system
-
Thomas Kühlkamp
Abstract
The sodium taurocholate cotransporting polypeptide (Ntcp, Slc10a1) is the major uptake system for bile acids into liver cells. This study investigated the degradation of rat Ntcp and human NTCP by the ubiquitin-proteasome system (UPS). In stably transfected HepG2 cells, rat Ntcp was complex-glycosylated and localized at the plasma membrane. Inhibition of proteasomes by MG-132 or lactacystin led to the accumulation of intracellular Ntcp, a process dependent on de novo protein synthesis. Intracellular Ntcp was core-glycosylated, indicating an endoplasmic reticulum (ER) origin. Core-glycosylated Ntcp was found in cytosolic, detergent-insoluble deposits with characteristics of aggresomes: they co-localized with ubiquitin at the microtubule organization center and Ntcp from these deposits was polyubiquitinated. Transient transfections of Ntcp/NTCP induced intracellular deposits that co-localized with ubiquitin, even in the absence of proteasome inhibitors. Similarly, in livers of patients with progressive familial intrahepatic cholestasis, NTCP could be detected co-localized with ubiquitin in hepatocytes. We conclude that maturing Ntcp/NTCP is degraded by the ubiquitin-proteasome system at the level of ER-associated degradation (ERAD). An imbalance in the synthesis and degradation of NTCP at the level of the ER or alterations in the ERAD machinery might be the cause of intracellular NTCP deposits in transient transfections and in cholestatic livers.
References
Bordallo, J., Plemper, R.K., Finger, A., and Wolf, D.H. (1998). Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell9, 209–222.10.1091/mbc.9.1.209Suche in Google Scholar
Cuervo, A.M., Palmer, A., Rivett, A.J., and Knecht, E. (1995). Degradation of proteasomes by lysosomes in rat liver. Eur. J. Biochem.227, 792–800.10.1111/j.1432-1033.1995.tb20203.xSuche in Google Scholar
Denson, L.A., Auld, K.L., Schiek, D.S., McClure, M.H., Mangelsdorf, D.J., and Karpen, S.J. (2000). Interleukin-1b suppresses retinoid transactivation of two hepatic transporter genes involved in bile formation. J. Biol. Chem.275, 8835–8843.10.1074/jbc.275.12.8835Suche in Google Scholar
Denson, L.A., Sturm, E., Echevarria, W., Zimmerman, T.L., Makishima, M., Mangelsdorf, D.J., and Karpen, S.J. (2001). The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology121, 140–147.10.1053/gast.2001.25503Suche in Google Scholar
De Vree, J.M., Jacquemin, E., Sturm, E., Cresteil, D., Bosma, P.J., Aten, J., Deleuze, J.F., Desrochers, M., Burdelski, M., Bernard, O., Oude Elferink, R.P., and Hadchouel, M. (1998). Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc. Natl. Acad. Sci. USA95, 282–287.10.1073/pnas.95.1.282Suche in Google Scholar
Dranoff, J.A., McClure, M., Burgstahler, A.D., Denson, L.A., Crawford, A.R., Crawford, J.M., Karpen, S.J., and Nathanson, M.H. (1999). Short-term regulation of bile acid uptake by microfilament-dependent translocation of rat ntcp to the plasma membrane. Hepatology30, 223–229.10.1002/hep.510300136Suche in Google Scholar
Ellgaard, L. and Helenius, A. (2003). Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol.4, 181–191.10.1038/nrm1052Suche in Google Scholar
Fang, S., Ferrone, M., Yang, C., Jensen, J.P., Tiwari, S., and Weissman, A.M. (2001). The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA98, 14422–14427.10.1073/pnas.251401598Suche in Google Scholar
Fickert, P., Trauner, M., Fuchsbichler, A., Stumptner, C., Zatloukal, K., and Denk, H. (2002). Bile acid-induced Mallory body formation in drug-primed mouse liver. Am. J. Pathol.161, 2019–2026.10.1016/S0002-9440(10)64480-XSuche in Google Scholar
Garcia-Mata, R., Bebok, Z., Sorscher, E.J., and Sztul, E.S. (1999). Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J. Cell Biol.146, 1239–1254.10.1083/jcb.146.6.1239Suche in Google Scholar PubMed PubMed Central
Garcia-Mata, R., Gao, Y.S., and Sztul, E. (2002). Hassles with taking out the garbage: aggravating aggresomes. Traffic3, 388–396.10.1034/j.1600-0854.2002.30602.xSuche in Google Scholar
Hagenbuch, B. and Meier, P.J. (2003). The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta1609, 1–18.10.1016/S0005-2736(02)00633-8Suche in Google Scholar
Hagenbuch, B., Stieger, B., Foguet, M., Lubbert, H., and Meier, P.J. (1991). Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc. Natl. Acad. Sci. USA88, 10629–10633.10.1073/pnas.88.23.10629Suche in Google Scholar
Hampton, R.Y. (2002). ER-associated degradation in protein quality control and cellular regulation. Curr. Opin. Cell Biol.14, 476–482.10.1016/S0955-0674(02)00358-7Suche in Google Scholar
Higuchi, H. and Gores, G.J. (2003). Bile acid regulation of hepatic physiology: IV. Bile acids and death receptors. Am. J. Physiol. Gastrointest. Liver Physiol.284, G734–G738.Suche in Google Scholar
Ho, R.H., Leake, B.F., Roberts, R.L., Lee, W., and Kim, R.B. (2004). Ethnicity-dependent polymorphism in NTCP (SLC10A1) reveals a domain critical for bile acid substrate recognition. J. Biol. Chem.279, 7213–7222.10.1074/jbc.M305782200Suche in Google Scholar
Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L.O., Herscovics, A., and Nagata, K. (2001). A novel ER α-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep.2, 415–422.10.1093/embo-reports/kve084Suche in Google Scholar
Jarosch, E., Taxis, C., Volkwein, C., Bordallo, J., Finley, D., Wolf, D.H., and Sommer, T. (2002). Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol.4, 134–139.10.1038/ncb746Suche in Google Scholar
Jensen, T.J., Loo, M.A., Pind, S., Williams, D.B., Goldberg, A.L., and Riordan, J.R. (1995). Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell83, 129–135.10.1016/0092-8674(95)90241-4Suche in Google Scholar
Johnston, J.A., Ward, C.L., and Kopito, R.R. (1998). Aggresomes: a cellular response to misfolded proteins. J. Cell Biol.143, 1883–1898.10.1083/jcb.143.7.1883Suche in Google Scholar PubMed PubMed Central
Johnston, J.A., Illing, M.E., and Kopito, R.R. (2002). Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil. Cytoskeleton53, 26–38.10.1002/cm.10057Suche in Google Scholar PubMed
Kawamata, Y., Fujii, R., Hosoya, M., Harada, M., Yoshida, H., Miwa, M., Fukusumi, S., Habata, Y., Itoh, T., Shintani, Y., et al. (2003). A G protein-coupled receptor responsive to bile acids. J. Biol. Chem.278, 9435–9440.10.1074/jbc.M209706200Suche in Google Scholar
Keitel, V., Nies, A.T., Brom, M., Hummel-Eisenbeiss, J., Spring, H., and Keppler, D. (2002). A common Dubin-Johnson syndrome mutation impairs protein maturation and transport activity of MRP2 (ABCC2). Am. J. Physiol. Gastrointest. Liver Physiol.284, G165–G174.Suche in Google Scholar
Keitel, V., Burdelski, M., Warskulat, U., Kühlkamp, T., Keppler, D., Häussinger, D., and Kubitz, R. (2005). Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology41, 1160–1172.10.1002/hep.20682Suche in Google Scholar
Kopito, R.R. and Sitia, R. (2000). Aggresomes and Russell bodies. Symptoms of cellular indigestion? EMBO Rep.1, 225–231.10.1093/embo-reports/kvd052Suche in Google Scholar
Kostova, Z., and Wolf, D.H. (2003). For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J.22, 2309–2317.10.1093/emboj/cdg227Suche in Google Scholar
Kubitz, R., Wettstein, M., Warskulat, U., and Häussinger, D. (1999). Regulation of the multidrug resistance protein 2 in the rat liver by lipopolysaccharide and dexamethasone. Gastroenterology116, 401–410.10.1016/S0016-5085(99)70138-1Suche in Google Scholar
Kubitz, R., Huth, C., Schmitt, M., Horbach, A., Kullak-Ublick, G.A., and Häussinger, D. (2001). Protein kinase C-dependent distribution of the multidrug resistance protein 2 from the canalicular to the basolateral membrane in human HepG2 cells. Hepatology34, 340–350.10.1053/jhep.2001.25959Suche in Google Scholar
Kubitz, R., Sütfels, G., Kühlkamp, T., Kölling, R., and Häussinger, D. (2004). Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology126, 541–553.10.1053/j.gastro.2003.11.003Suche in Google Scholar
Kullak-Ublick, G.A., Ismair, M., Kubitz, R., Häussinger, D., Stieger, B., Meier, P.J., Beuers, U., and Paumgartner, G. (2000). Stable expression and functional characterisation of a Na+-taurocholate cotransporting green fluorescent protein in human hepatoblastome HepG2 cells. Cytotechnology34, 1–9.Suche in Google Scholar
Lee, D.H. and Goldberg, A.L. (1998). Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol.8, 397–403.10.1016/S0962-8924(98)01346-4Suche in Google Scholar
Li, D., Zimmerman, T.L., Thevananther, S., Lee, H.Y., Kurie, J.M., and Karpen, S.J. (2002). Interleukin-1b-mediated suppression of RXR:RAR transactivation of the Ntcp promoter is JNK-dependent. J. Biol. Chem.277, 31416–31422.10.1074/jbc.M204818200Suche in Google Scholar PubMed
Liang, D., Hagenbuch, B., Stieger, B., and Meier, P.J. (1993). Parallel decrease of Na+-taurocholate cotransport and its encoding mRNA in primary cultures of rat hepatocytes. Hepatology18, 1162–1166.Suche in Google Scholar
Meier, P.J. and Stieger, B. (2002). Bile salt transporters. Annu. Rev. Physiol.64, 635–661.10.1146/annurev.physiol.64.082201.100300Suche in Google Scholar PubMed
Mimnaugh, E.G., Bonvini, P., and Neckers, L. (1999). The measurement of ubiquitin and ubiquitinated proteins. Electrophoresis20, 418–428.10.1002/(SICI)1522-2683(19990201)20:2<418::AID-ELPS418>3.0.CO;2-NSuche in Google Scholar
Molinari, M., Calanca, V., Galli, C., Lucca, P., and Paganetti, P. (2003). Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science299, 1397–1400.10.1126/science.1079474Suche in Google Scholar
Mukhopadhyay, S., Ananthanarayanan, M., Stieger, B., Meier, P.J., Suchy, F.J., and Anwer, M.S. (1998). Sodium taurocholate cotransporting polypeptide is a serine, threonine phosphoprotein and is dephosphorylated by cyclic adenosine monophosphate. Hepatology28, 1629–1636.10.1002/hep.510280624Suche in Google Scholar
Oda, Y., Hosokawa, N., Wada, I., and Nagata, K. (2003). EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science299, 1394–1397.10.1126/science.1079181Suche in Google Scholar
Oude Elferink, R.P., and Groen, A.K. (2002). Genetic defects in hepatobiliary transport. Biochim. Biophys. Acta1586, 129–145.10.1016/S0925-4439(01)00103-XSuche in Google Scholar
Petäjä-Repo, U.E., Hogue, M., Laperriere, A., Walker, P., and Bouvier, M. (2000). Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. J. Biol. Chem.275, 13727–13736.10.1074/jbc.275.18.13727Suche in Google Scholar
Rippin, S.J., Hagenbuch, B., Meier, P.J., and Stieger, B. (2001). Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes. Hepatology33, 776–782.10.1053/jhep.2001.23433Suche in Google Scholar
Saliba, R.S., Munro, P.M., Luthert, P.J., and Cheetham, M.E. (2002). The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J. Cell Sci.115, 2907–2918.10.1242/jcs.115.14.2907Suche in Google Scholar
Schubert, U., Anton, L.C., Gibbs, J., Norbury, C.C., Yewdell, J.W., and Bennink, J.R. (2000). Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature404, 770–774.10.1038/35008096Suche in Google Scholar
Shamu, C.E., Flierman, D., Ploegh, H.L., Rapoport, T.A., and Chau, V. (2001). Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol. Mol. Biol. Cell12, 2546–2555.10.1091/mbc.12.8.2546Suche in Google Scholar
Stieger, B., Hagenbuch, B., Landmann, L., Hoechli, M., Schröder, A., and Meier, P.J. (1994). In situ localisation of the hepatocytic Na+/taurocholate cotransporting polypeptide in rat liver. Gastroenterology107, 1781–1787.10.1016/0016-5085(94)90821-4Suche in Google Scholar
Strautnieks, S.S., Kagalwalla, A.F., Tanner, M.S., Knisely, A.S., Bull, L., Freimer, N., Kocoshis, S.A., Gardiner, R.M., and Thompson, R.J. (1997). Identification of a locus for progressive familial intrahepatic cholestasis PFIC2 on chromosome 2q24. Am. J. Hum. Genet.61, 630–633.10.1086/515501Suche in Google Scholar
Swanson, R., Locher, M., and Hochstrasser, M. (2001). A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Mata2 repressor degradation. Genes Dev.15, 2660–2674.10.1101/gad.933301Suche in Google Scholar
Tsai, B., Ye, Y., and Rapoport, T.A. (2002). Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol.3, 246–255.10.1038/nrm780Suche in Google Scholar
Waelter, S., Boeddrich, A., Lurz, R., Scherzinger, E., Lueder, G., Lehrach, H., and Wanker, E.E. (2001). Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol. Biol. Cell12, 1393–1407.10.1091/mbc.12.5.1393Suche in Google Scholar
Wang, L., Soroka, C.J., and Boyer, J.L. (2002). The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. J. Clin. Invest.110, 965–972.10.1172/JCI0215968Suche in Google Scholar
Ward, C.L., Omura, S., and Kopito, R.R. (1995). Degradation of CFTR by the ubiquitin-proteasome pathway. Cell83, 121–127.10.1016/0092-8674(95)90240-6Suche in Google Scholar
Xia, X., Roundtree, M., Merikhi, A., Lu, X., Shentu, S., and LeSage, G. (2004). Degradation of the apical sodium-dependent bile acid transporter (ASBT) by the ubiquitin-proteasome pathway in cholangiocytes. J. Biol. Chem.279, 44931–44937.10.1074/jbc.M400969200Suche in Google Scholar PubMed
Yoshida, Y., Chiba, T., Tokunaga, F., Kawasaki, H., Iwai, K., Suzuki, T., Ito, Y., Matsuoka, K., Yoshida, M., Tanaka, K., and Tai, T. (2002). E3 ubiquitin ligase that recognizes sugar chains. Nature418, 438–442.10.1038/nature00890Suche in Google Scholar PubMed
Yoshida, Y., Tokunaga, F., Chiba, T., Iwai, K., Tanaka, K., and Tai, T. (2003). Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J. Biol. Chem.278, 43877–43884.10.1074/jbc.M304157200Suche in Google Scholar PubMed
Zollner, G., Fickert, P., Silbert, D., Fuchsbichler, A., Stumptner, C., Zatloukal, K., Denk, H., and Trauner, M. (2002). Induction of short heterodimer partner 1 precedes downregulation of Ntcp in bile duct-ligated mice. Am. J. Physiol. Gastrointest. Liver Physiol.282, G184–G191.10.1152/ajpgi.00215.2001Suche in Google Scholar PubMed
©2005 by Walter de Gruyter Berlin New York
Artikel in diesem Heft
- Highlight: Radicals in Enzymatic Catalysis
- Radical-mediated dehydration reactions in anaerobic bacteria
- Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster
- Structural and functional comparison of HemN to other radical SAM enzymes
- New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria
- Unusual reactions involved in anaerobic metabolism of phenolic compounds
- Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism
- Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase
- Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes
- Combinatorial approaches to functional models for galactose oxidase
- Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450
- Impact of Mycoplasma hyorhinis infection on l-arginine metabolism: differential regulation of the human and murine iNOS gene
- Degradation of the sodium taurocholate cotransporting polypeptide (NTCP) by the ubiquitin-proteasome system
- Identification of three novel mutations in the dihydropyrimidine dehydrogenase gene associated with altered pre-mRNA splicing or protein function
Artikel in diesem Heft
- Highlight: Radicals in Enzymatic Catalysis
- Radical-mediated dehydration reactions in anaerobic bacteria
- Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster
- Structural and functional comparison of HemN to other radical SAM enzymes
- New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria
- Unusual reactions involved in anaerobic metabolism of phenolic compounds
- Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism
- Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase
- Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes
- Combinatorial approaches to functional models for galactose oxidase
- Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450
- Impact of Mycoplasma hyorhinis infection on l-arginine metabolism: differential regulation of the human and murine iNOS gene
- Degradation of the sodium taurocholate cotransporting polypeptide (NTCP) by the ubiquitin-proteasome system
- Identification of three novel mutations in the dihydropyrimidine dehydrogenase gene associated with altered pre-mRNA splicing or protein function