Home Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450
Article
Licensed
Unlicensed Requires Authentication

Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450

  • Christiane Jung , Volker Schünemann , Friedhelm Lendzian , Alfred X. Trautwein , Jörg Contzen , Marcus Galander , Lars H. Böttger , Matthias Richter and Anne-Laure Barra
Published/Copyright: October 12, 2005
Biological Chemistry
From the journal Volume 386 Issue 10

Abstract

From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-π-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-π-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-π-cation radical, which makes it extremely difficult to trap compound I.

:

Corresponding author ; Present address: KKS Ultraschall AG, Frauholzring 29, CH-6422 Steinen, Switzerland.

References

Aasa R., and Vånngard T.J. (1975). EPR signal intensity and powder shapes: a reexamination. Magn. Reson.19, 308–315.10.1016/0022-2364(75)90045-1Search in Google Scholar

Alderton, K., Cooper, C.E., and Knowles, R.G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem. J.357, 593–615.10.1042/bj3570593Search in Google Scholar

Barra, A.L. (2001). High-frequency EPR spectroscopy of single-molecule magnets: a case study. Appl. Magn. Res.21, 619–628.10.1007/BF03162434Search in Google Scholar

Barrows, T. P., Bhaskar, B., and Poulos, T.L. (2004). Electrostatic control of the tryptophan radical in cytochrome c peroxidase. Biochemistry43, 8826–8834.10.1021/bi049531gSearch in Google Scholar PubMed

Bleifuß, G., Kolberg, M., Pötsch, S., Hofbauer, W., Bittl, R., Lubitz, W., Gräslund, A., Lassmann, G., and Lendzian, F. (2001). Tryptophan and tyrosyl radicals in ribonucleotide reductase: a comparative high-field EPR study at 94 GHz. Biochemistry40, 15362–15368.10.1021/bi010707dSearch in Google Scholar PubMed

Blodig, W., Smith, A.T., Doyle, W.A., and Piontek, K.J. (2001). Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism. Mol. Biol.305, 851–861.10.1006/jmbi.2000.4346Search in Google Scholar PubMed

Budiman, K., Kannt, A., Lyubenova, S., Richter, O.M.H., Ludwig, B., Michel, H., and MacMillan, F. (2004). Tyrosine 167: the origin of the radical species observed in the reaction of cytochrome c oxidase with hydrogen peroxide in Paracoccus denitrificans. Biochemistry43, 11709–11716.10.1021/bi048898iSearch in Google Scholar PubMed

Dawson, J.H. and Sono, M. (1987). Cytochrome P-450 and chloroperoxidase: thiolate-ligated heme enzymes. Spectroscopic determination of their active site structures and mechanistic implications of thiolate ligation. Chem. Rev.87, 1255–1276.Search in Google Scholar

Dulak, J. and Józkowicz, A. (2003). Carbon monoxide – a ‘new’ gaseous modulator of gene expression. Acta Biochim. Pol.50, 31–47.10.18388/abp.2003_3712Search in Google Scholar

Egawa, T., Shimada, H., and Ishimura, Y. (1994). Evidence for Compound I formation in the reaction of cytochrome P450cam with m-chloroperbenzoic acid. Biochem. Biophys. Res. Commun.201, 1464–1469.10.1006/bbrc.1994.1868Search in Google Scholar PubMed

Egawa, T., Proshlyakov, D.A., Miki, H., Makino, R., Ogura, T., Kitagawa, T., and Ishimura, Y. (2001). Effects of a thiolate axial ligand on the π-π* electronic states of oxoferryl porphyrins: a study of the optical and resonance Raman spectra of compound I and II of chloroperoxidase. J. Biol. Inorg. Chem.6, 46–54.10.1007/s007750000181Search in Google Scholar PubMed

Fleming, I., Michaelis, U.R., Bredenkötter, D., Fisslthaler, B., Dehghani, F., Brandes, R.P., and Busse, R. (2001). Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ. Res.88, 44–51.10.1161/01.RES.88.1.44Search in Google Scholar PubMed

Groves, J.T. and Gilbert, J.A. (1986). Electrochemical generation of an iron(IV) porphyrin. Inorg. Chem.25, 123–125.10.1021/ic00222a003Search in Google Scholar

Gottlieb, R.A. (2003). Cytochrome P450: major player in reperfusion injury. Arch. Biochem. Biophys.420, 262–267.10.1016/j.abb.2003.07.004Search in Google Scholar PubMed

Guengerich, F.P. (2001). Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicology. Chem. Res. Toxicol.14, 611–650.10.1021/tx0002583Search in Google Scholar PubMed

Haddad, J.J. (2004). On the antioxidant mechanisms of Bcl-2: a retrospective of NF-κB signaling and oxidative stress. Biochem. Biophys. Res. Commun.322, 355–363.10.1016/j.bbrc.2004.07.138Search in Google Scholar PubMed

Harami, T., Maeda, Y., Morita, Y., Trautwein, A., and Gonser, U.J. (1977). Mössbauer spectroscopic determination of the electronic structure of highly oxidized iron in hemoproteins. J. Chem. Phys.67, 1164–1169.10.1063/1.434969Search in Google Scholar

Hoganson, C.W., Sahlin, M., Sjöberg, B.-M., and Babcock, G.T. (1996). Electron magnetic resonance of the tyrosyl radical in ribonucleotide reductase from Escherichia coli.J. Am. Chem. Soc.118, 4672–4679.10.1021/ja953979aSearch in Google Scholar

Högbom, M., Galander, M., Andersson, M., Kolberg, M., Hofbauer, W., Lassmann, G., Nordlund, P., and Lendzian, F. (2003). Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1.4 Å X-ray data. Proc. Natl. Acad. Sci. USA100, 3209–3214.10.1073/pnas.0536684100Search in Google Scholar PubMed PubMed Central

Ivancich, A., Mattioli, T.A., and Un, S. (1999). Effect of protein microenvironment on tyrosyl radicals. A high-field (285 GHz) EPR, resonance Raman, and hybrid density functional study. J. Am. Chem. Soc.121, 5743–5753.Search in Google Scholar

Ivancich, A,. Jakopitsch, C., Auer, M., Un, S., and Obinger, C. (2003). Protein-based radicals in the catalase-peroxidase of synechocystis PCC6803: a multifrequency EPR investigation of wild type and variants on the environment of the heme active site. J. Am. Chem. Soc.125, 14093–14102.10.1021/ja035582+Search in Google Scholar PubMed

Jung, C., Lendzian, F., Schünemann, V., Trautwein, A.X., Contzen, J., Richter, M., Galander, M., Ghosh, D.K., and Kozin, S.A. (2004). Uncoupling of the P450 reaction cycle related to protein structural properties. In: Proceedings of the 15th International Symposium on Microsomes and Drug Oxidations, Mainz, Germany, July 4–9, F. Oesch, ed. (Bologna, Italy: Monduzzi Editore-International Proceedings Division), pp. 87–91.Search in Google Scholar

Jung, C., Lendzian, F., Schünemann, V., Richter, M., Böttger, L.H., Trautwein, A.X., Contzen, J., Galander, M., Ghosh, D.K., and Barra, A.-L. (2005). Multi-frequency EPR and Mössbauer spectroscopic studies on freeze-quenched reaction intermediates of nitric oxide synthase. Magn. Res., in press.10.1002/mrc.1694Search in Google Scholar PubMed

Kellner, D.G., Hung, S.-C., Weiss, K.E., and Sligar, S.G. (2002). Kinetic characterization of compound I formation in the thermostable cytochrome P450 CYP119. J. Biol. Chem.277, 9641–9644.10.1074/jbc.C100745200Search in Google Scholar

Lang, G., Spartalian, K., and Yonetani, T. (1976). Mössbauer spectroscopic study of compound ES of cytochrome c peroxidase. Biochim. Biophys. Acta451, 250–258.10.1016/0304-4165(76)90275-0Search in Google Scholar

Lendzian, F. (2005). Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy. Biochim. Biophys. Acta1707, 67–90.10.1016/j.bbabio.2004.02.011Search in Google Scholar

Lendzian, F., Sahlin, M., MacMillan, F., Bittl, R., Fiege, R., Pötsch, S., Sjöberg, B.-M., Gräslund, A., Lubitz, W., and Lassmann, G. (1996). Electronic structure of neutral tryptophan radicals in ribonucleotide reductase studied by EPR and ENDOR spectroscopy. J. Am. Chem. Soc.118, 8111–8120.10.1021/ja960917rSearch in Google Scholar

Maeda, Y. (1967). Mössbauer effect in peroxidase-hydrogen peroxide compounds. Biochem. Biophys. Res. Commun.29, 680–685.10.1016/0006-291X(67)90270-7Search in Google Scholar

Mandon, D., Weiss, R., Jayaraj, K., Gold, A., Terner, J., Bill, E., and Trautwein, A.X. (1992). Models for peroxidase compound I: generation and spectroscopic characterization of new oxoferryl porphyrin π cation radical species. Inorg. Chem.31, 4404–4409.10.1021/ic00047a031Search in Google Scholar

Meilleur, F., Contzen, J., Myles, D.A.A., and Jung, C. (2004). Structural stability and dynamics of hydrogenated and perdeuterated cytochrome P450cam (CYP101). Biochemistry43, 8744–8753.10.1021/bi049418qSearch in Google Scholar

Mezzetti, A., Maniero, A.L., Brustolon, M., Giacometti, G., and Brunel, L.C. (1999). A tyrosyl radical in an irradiated single crystal of N-acetyl-L-tyrosine studied by X-band cw-EPR, high-frequency EPR, and ENDOR spectroscopies. J. Phys. Chem. A103, 9636–9643.10.1021/jp9903763Search in Google Scholar

Mombourquette, H.J. and Weil, J.E.J. (1992). Simulation of magnetic resonance powder spectra. J. Magn. Reson.99, 37–44.10.1016/0022-2364(92)90153-XSearch in Google Scholar

Ortiz de Montellano, P.R. (2005). Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd Ed. (New York, USA: Kluwer Academic/Plenum Publishers).10.1007/b139087Search in Google Scholar

Palcic, M.M., Rutter, R., Araiso, T., Hager, L.P., and Dunford, H.B. (1980). Spectrum of chloroperoxidase compound I. Biochem. Biophys. Res. Commun.94, 1123–1127.10.1016/0006-291X(80)90535-5Search in Google Scholar

Pogni, R., Baratto, M.C., Giansanti, S., Teutloff, C., Verdin, J., Valderrama, B., Lendzian, F., Lubitz, W., Vazquez-Duhalt, R., and Basosi, R. (2005). Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry44, 4267–4274.10.1021/bi047474lSearch in Google Scholar

Rieger, P.H. (1982). Least squares analysis of the electron-spin-resonance powder pattern with noncoincident principal axes of the g-tensor and the hyperfine tensors. J. Magn. Reson.50, 485–489.Search in Google Scholar

Riesenberg, D., Schulz, V., Knorre, W.A., Pohl, H.-D., Korz, D., Sanders, E.A., Roß, A., and Deckwer, W.-D. (1991). High cell density cultivation of Escherichia coli at controlled specific growth rate. J. Biotechnol.20, 17–28.10.1016/0168-1656(91)90032-QSearch in Google Scholar

Rutter, R., Hager, L.P., Dhonau, H., Hendrich, M., Valentine, M., and Debrunner, P. (1984). Chloroperoxidase compound I: electron paramagnetic resonance and Mössbauer studies. Biochemistry23, 6809–6816.10.1021/bi00321a082Search in Google Scholar

Rutter, R., Valentine, M., Hendrich, M.P., Hager, L.P., and Debrunner, P.G. (1983). Chemical nature of the porphyrin π cation radical in horseradish peroxidase compound I. Biochemistry22, 4769–4774.10.1021/bi00289a024Search in Google Scholar

Sambrook, J. and Russel, D.W. (2001). Molecular Cloning: A Laboratory Manual, 3rd Ed. (Cold Spring Harbor, USA: Cold Spring Harbor Laboratory Press).Search in Google Scholar

Schulz, C., Devaney, P.W., Winkler, H., Debrunner, P.G., Doan, N., Chiang, R., Rutter, R., and Hager, L.P. (1979a). Horseradish peroxidase compound I: evidence for spin coupling between the heme iron and a ‘free’ radical. FEBS Lett.103, 102–105.10.1016/0014-5793(79)81259-4Search in Google Scholar

Schulz, C. Chiang, R., and Debrunner, P.G. (1979b). Mössbauer parameters of Fe4+ heme proteins of spin S=1. J. Phys. Colloq.40C, 534–536.10.1051/jphyscol:19792185Search in Google Scholar

Schulz, C., Rutter, R., Sage, J.T., Debrunner, P.G., and Hager, L.P. (1984). Mossbauer and electron paramagnetic resonance studies of horseradish peroxidase and its catalytic intermediates. Biochemistry23, 4743–4754.10.1021/bi00315a033Search in Google Scholar

Schünemann, V., Jung, C., Trautwein, A.X., Mandon, D., and Weiss, R. (2000). Intermediates in the reaction of substrate-free cytochrome P450cam with peroxy acetic acid. FEBS Lett.479, 149–154.10.1016/S0014-5793(00)01886-XSearch in Google Scholar

Schünemann, V., Jung, C., Terner, J., Trautwein, A.X., and Weiss, R. (2002). Spectroscopic studies of peroxyacetic acid reaction intermediate of cytochrome P450cam and chloroperoxidase. J. Inorg. Biochem.91, 586–596.10.1016/S0162-0134(02)00476-2Search in Google Scholar

Schünemann, V., Lendzian, F., Jung, C., Contzen, J., Barra, A.L., Sligar, S.G., and Trautwein, A.X. (2004). Tyrosine radical formation in the reaction of wild type and mutant cytochrome P450cam with peroxy acids: a multifrequency EPR study of intermediates on the millisecond time scale. J. Biol. Chem.279, 10919–10930.10.1074/jbc.M307884200Search in Google Scholar PubMed

Sevrioukova, I.F., Truan, G., and Peterson, J.A. (1996). The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains. Biochemistry35, 7528–7535.10.1021/bi960330pSearch in Google Scholar PubMed

Sevrioukova, I.F., Truan, G., and Peterson, J.A. (1997). Recon-stitution of the fatty acid hydroxylase activity of cytochrome P450BM-3 utilizing its functional domains. Arch. Biochem. Biophys.340, 231–238.10.1006/abbi.1997.9895Search in Google Scholar PubMed

Sivaraja, M., Goodin, D.B., Smith, M., and Hoffman, B.M. (1989). Identification by ENDOR of Trp191 as the free-radical site in cytochrome c peroxidase compound ES. Science245, 738–740.10.1126/science.2549632Search in Google Scholar PubMed

Spolitak, T., Dawson, J.H., and Ballou, D.P. (2005). Reaction of ferric cytochrome P450cam with peracids: kinetic characterization of intermediates on the reaction pathway. J. Biol. Chem.280, 20300–20309.10.1074/jbc.M501761200Search in Google Scholar PubMed

Stesmans A., and van Gorp, G. (1989). Novel method for accurate g measurements in electron-spin resonance. Rev. Sci. Instrum.60, 2949–2952.10.1063/1.1140633Search in Google Scholar

Stones, J.R. (2004). An assessment of proposed mechanisms for sensing hydrogen peroxide in mammalian systems. Arch. Biochem. Biophys.422, 119–124.10.1016/j.abb.2003.12.029Search in Google Scholar PubMed

Thannickal, V.J. and Fanburg, B.L. (2000). Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol.279, L1005–L1028.10.1152/ajplung.2000.279.6.L1005Search in Google Scholar PubMed

Trautwein. A.X., Bill, E., Bominaar, E.L., and Winkler, H. (1991). Iron-containing proteins and related analogs – complementary Mössbauer, EPR and magnetic susceptibility studies. Struct. Bond.78, 1–95.10.1007/3-540-54261-2_1Search in Google Scholar

Wolin, M.S. (2000). Interactions of oxidants with vascular signaling systems. Arterioscler. Thromb. Vasc. Biol.20, 1430–1442.10.1161/01.ATV.20.6.1430Search in Google Scholar PubMed

Zangar, R.C., Davydov, D.R., and Verma, S. (2004). Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol. Appl. Pharmacol.199, 316–331.10.1016/j.taap.2004.01.018Search in Google Scholar PubMed

Published Online: 2005-10-12
Published in Print: 2005-10-01

©2005 by Walter de Gruyter Berlin New York

Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.120/html
Scroll to top button