Startseite Generation of glycogen- and albumin-producing hepatocyte-like cells from embryonic stem cells
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generation of glycogen- and albumin-producing hepatocyte-like cells from embryonic stem cells

  • Gabriela Kania , Przemyslaw Blyszczuk , Andrea Jochheim , Michael Ott und Anna M. Wobus
Veröffentlicht/Copyright: 1. Juni 2005
Biological Chemistry
Aus der Zeitschrift Band 385 Heft 10

Abstract

We present a novel two-step protocol for the differentiation of embryonic stem (ES) cells into the hepatic lineage. Differentiated hepatocyte-like cells express genes and proteins characteristic for endodermal and hepatic cells and acquire a functional hepatic phenotype as demonstrated by albumin secretion and glycogen storage. During differentiation, α-fetoprotein, albumin, transthyretin, α-1-antitrypsin, cytochrome P450 subunits 2b9 and 2b13 and tyrosine aminotransferase transcripts are upregulated. Quantitative RT-PCR data revealed a fetal hepatic phenotype corresponding to day 13–14 of liver development. Terminally differentiated hepatocyte-like cells show a bi-nucleated, cuboidal morphology labeled by albumin, α-1-antitrypsin, liver amylase, dipeptidyl peptidase IV, c-met and cytokeratin 18.

ES-derived intermediate cell types transiently and partially co-express nestin with albumin and α-fetoprotein, respectively, but not cytokeratin 19. This finding suggests an ES-derived potential hepatic progenitor cell type, which is partially nestin-, albumin- and α-fetoproteinpositive, but cytokeratin 19-negative.

:

References

Alison, M.R., Golding, M.H., and Sarraf, C.E. (1996). Pluripotential liver stem cells: facultative stem cells located in the biliary tree. Cell Prolif.29, 373–402.10.1111/j.1365-2184.1996.tb00982.xSuche in Google Scholar

Anisimov, S.V., Tarasov, K.V., Riordon, D., Wobus, A.M., and Boheler, K.R. (2002). SAGE identification of differentiation responsive genes in P19 embryonic cells induced to form cardiomyocytes in vitro. Mech. Dev.117, 25–74.10.1016/S0925-4773(02)00177-6Suche in Google Scholar

Azuma, H., Hirose, T., Fujii, H., Oe, S., Yasuchika, K., Fujikawa, T., and Yamaoka, Y. (2003). Enrichment of hepatic progenitor cells from adult mouse liver. Hepatology37, 1385–1394.10.1053/jhep.2003.50210Suche in Google Scholar

Bisgaard, H.C., Nagy, P., Ton, P.T., Hu, Z., and Thorgeirsson, S.S. (1994). Modulation of keratin 14 and α-fetoprotein expression during hepatic oval cell proliferation and liver regeneration. J. Cell Physiol.159, 475–484.10.1002/jcp.1041590312Suche in Google Scholar

Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St Onge, L., and Wobus, A.M. (2003). Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc. Natl. Acad. Sci. USA100, 998–1003.10.1073/pnas.0237371100Suche in Google Scholar

Chinzei, R., Tanaka, Y., Shimizu-Saito, K., Hara, Y., Kakinuma, S., Watanabe, M., Teramoto, K., Arii, S., Takase, K., Sato, C. et al. (2002). Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology36, 22–29.10.1053/jhep.2002.34136Suche in Google Scholar

Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem.162, 156–159.10.1016/0003-2697(87)90021-2Suche in Google Scholar

Czyz, J., Wiese, C., Rolletschek, A., Blyszczuk, P., Cross, M., and Wobus, A.M. (2003). Potential of embryonic and adult stem cells in vitro. Biol. Chem.384, 1391–1409.10.1515/BC.2003.155Suche in Google Scholar

Dabeva, M.D., Petkov, P.M., Sandhu, J., Oren, R., Laconi, E., Hurston, E., and Shafritz, D.A. (2000). Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am. J. Pathol.156, 2017–2031.10.1016/S0002-9440(10)65074-2Suche in Google Scholar

Grompe, M. and Finegold, M.J. (2001). Liver stem cells. In: Stem Cell Biology (Cold Spring Harbor, USA: Cold Spring Harbor Laboratory Press), pp. 455–497.Suche in Google Scholar

Hamazaki, T., Iiboshi, Y., Oka, M., Papst, P.J., Meacham, A.M., Zon, L.I., and Terada, N. (2001). Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett.497, 15–19.10.1016/S0014-5793(01)02423-1Suche in Google Scholar

Haruna, Y., Saito, K., Spaulding, S., Nalesnik, M.A., and Gerber, M.A. (1996). Identification of bipotential progenitor cells in human liver development. Hepatology23, 476–481.10.1002/hep.510230312Suche in Google Scholar

Ishizaka, S., Shiroi, A., Kanda, S., Yoshikawa, M., Tsujinoue, H., Kuriyama, S., Hasuma, T., Nakatani, K., and Takahashi, K. (2002). Development of hepatocytes from ES cells after transfection with the HNF-3β gene. FASEB J.16, 1444–1446.10.1096/fj.01-0806fjeSuche in Google Scholar

Jochheim, A., Hillemann, T., Kania, G., Scharf, J., Attaran, M., Manns, M.P., Wobus, A.M., and Ott, M. (2004). Quantitative gene expression profiling reveals a fetal hepatic phenotype of murine ES-derived hepatocytes. Int. J. Dev. Biol.48, 23–29.10.1387/ijdb.15005571Suche in Google Scholar

Jones, E.A., Clement-Jones, M., James, O.F., and Wilson, D.I. (2001). Differences between human and mouse α-fetoprotein expression during early development. J. Anat.198, 555–559.10.1017/S0021878201007634Suche in Google Scholar

Jones, E.A., Tosh, D., Wilson, D.I., Lindsay, S., and Forrester, L.M. (2002). Hepatic differentiation of murine embryonic stem cells. Exp. Cell Res.272, 15–22.10.1006/excr.2001.5396Suche in Google Scholar

Kania, G., Blyszczuk, P., Czyz, J., Navarrete-Santos, A., and Wobus, A.M. (2003). Differentiation of mouse embryonic stem cells into pancreatic and hepatic cells. Methods Enzymol.365, 287–303.10.1016/S0076-6879(03)65021-4Suche in Google Scholar

Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M., and McKay, R.D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol.18, 675–679.10.1038/76536Suche in Google Scholar PubMed

Lemire, J.M., Shiojiri, N., and Fausto, N. (1991). Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine. Am. J. Pathol.139, 535–552.Suche in Google Scholar

Miyashita, H., Suzuki, A., Fukao, K., Nakauchi, H., and Taniguchi, H. (2002). Evidence for hepatocyte differentiation from embryonic stem cells in vitro. Cell Transplant.11, 429–434.10.3727/000000002783985675Suche in Google Scholar

Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J.C. (1993). Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA90, 8424–8428.10.1073/pnas.90.18.8424Suche in Google Scholar PubMed PubMed Central

Niki, T., Pekny, M., Hellemans, K., Bleser, P.D., Berg, K.V., Vaeyens, F., Quartier, E., Schuit, F., and Geerts, A. (1999). Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology29, 520–527.10.1002/hep.510290232Suche in Google Scholar PubMed

Okabe, S., Forsberg-Nilsson, K., Spiro, A.C., Segal, M., and McKay, R.D. (1996). Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev.59, 89–102.10.1016/0925-4773(96)00572-2Suche in Google Scholar

Petersen, B.E., Grossbard, B., Hatch, H., Pi, L., Deng, J., and Scott, E.W. (2003). Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology37, 632–640.10.1053/jhep.2003.50104Suche in Google Scholar

Rajagopal, J., Anderson, W.J., Kume, S., Martinez, O.I., and Melton, D.A. (2003). Insulin staining of ES cell progeny from insulin uptake. Science299, 363.10.1126/science.1077838Suche in Google Scholar

Rambhatla, L., Chiu, C.P., Kundu, P., Peng, Y., and Carpenter, M.K. (2003). Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant.12, 1–11.10.3727/000000003783985179Suche in Google Scholar

Reintoft, I. (1978). Periodic acid Schiff-positive non-glycogenic globules in hepatocytes. Differential diagnostic aspects in screening for α-1-antitrypsin globules in an autopsy material. Acta Pathol. Microbiol. Scand. A86, 325–329.10.1111/j.1699-0463.1978.tb02051.xSuche in Google Scholar

Rohwedel, J., Guan, K., Hegert, C., and Wobus, A.M. (2001). Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity studies: present state and future prospects. Toxicol. In Vitro15, 741–753.10.1016/S0887-2333(01)00074-1Suche in Google Scholar

Rolletschek, A., Chang, H., Guan, K., Czyz, J., Meyer, M., and Wobus, A.M. (2001). Differentiation of embryonic stem cell-derived dopaminergic neurons is enhanced by survival-promoting factors. Mech. Dev.105, 93–104.10.1016/S0925-4773(01)00385-9Suche in Google Scholar

Seki, S., Kitada, T., Sakaguchi, H., Iwai, S., Kawada, N., Hayashi, Y., and Kim, S.R. (2003). Expression of progenitor cell markers in livers with fulminant massive necrosis. Hepatol. Res.25, 149–157.10.1016/S1386-6346(02)00205-XSuche in Google Scholar

Sell, S. (1993). Liver stem cells. Science260, 1224.10.1126/science.8493561Suche in Google Scholar PubMed

Sun, X.Y. and An, J. (2004). Expression of nestin, an intermediate filament protein, in human fetal hepatic stem cells. Di Yi. Jun. Yi. Da. Xue. Xue. Bao.24, 207–209.Suche in Google Scholar

Tabei, I., Hashimoto, H., Ishiwata, I., Tokieda, Y., Tachibana, T., Akahori, M., Kyouda, S., Kubo, H., Yanaga, K., Yamazaki, Y. et al. (2003). New approach for the establishment of an hepatocyte cell line derived from rat early embryonic stem cells. Hum. Cell16, 39–46.10.1111/j.1749-0774.2003.tb00127.xSuche in Google Scholar PubMed

Thorgeirsson, S.S. and Grisham, J.W. (2003). Hepatic stem cells. Semin. Liver Dis.23, 301–302.Suche in Google Scholar

Wells, M.J., Hatton, M.W., Hewlett, B., Podor, T.J., Sheffield, W.P., and Blajchman, M.A. (1997). Cytokeratin 18 is expressed on the hepatocyte plasma membrane surface and interacts with thrombin-antithrombin complexes. J. Biol. Chem.272, 28574–28581.10.1074/jbc.272.45.28574Suche in Google Scholar PubMed

Wiese, C., Rolletschek, A., Kania, G., Blyszczuk, P., Tarasov, K.V., Tarasova, Y., Wersto, R.P., Boheler, K.R., and Wobus, A.M. (2004). Nestin expression – a property of multi-lineage progenitor cells? Cell. Mol. Life Sci., in press.10.1007/s00018-004-4144-6Suche in Google Scholar PubMed

Wobus, A.M., Kaomei, G., Shan, J., Wellner, M.C., Rohwedel, J., Ji, G., Fleischmann, B., Katus, H.A., Hescheler, J., and Franz, W.M. (1997). Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell Cardiol.29, 1525–1539.10.1006/jmcc.1997.0433Suche in Google Scholar PubMed

Wobus, A.M., Guan, K., Yang, H.T., and Boheler, K.R. (2002). Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol. Biol.185, 127–156.Suche in Google Scholar

Yamada, T., Yoshikawa, M., Kanda, S., Kato, Y., Nakajima, Y., Ishizaka, S., and Tsunoda, Y. (2002). In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells20, 146–154.10.1634/stemcells.20-2-146Suche in Google Scholar PubMed

Yasuchika, K., Hirose, T., Fujii, H., Oe, S., Hasegawa, K., Fujikawa, T., Azuma, H., and Yamaoka, Y. (2002). Establishment of a highly efficient gene transfer system for mouse fetal hepatic progenitor cells. Hepatology36, 1488–1497.10.1002/hep.1840360626Suche in Google Scholar

Zaret, K.S. (1996). Molecular genetics of early liver development. Annu. Rev. Physiol.58, 231–251.10.1146/annurev.ph.58.030196.001311Suche in Google Scholar PubMed

Published Online: 2005-06-01
Published in Print: 2004-10-01

© Walter de Gruyter

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2004.123/html
Button zum nach oben scrollen