Combined transport of water and ions through membrane channels
-
Peter Pohl
Abstract
The coupling of ion and water flow through membrane channels is under dispute. Among all human aquaporins only aquaporin-6 exhibits ion channel activity. Whether aquaporin-6 functions also as a water channel cannot yet be determined with confidence. Similarly, a comparison of single-channel water permeabilities from ion channels and aquaporins suggests that ion channels may play a secondary role as water channels. However, the fraction of absorbed fluid that crosses epithelial ion channels still remains to be determined.
References
Agmon, N. (1995). The Grotthuss Mechanism. Chem. Phys. Lett.244, 456–462.10.1016/0009-2614(95)00905-JSearch in Google Scholar
Agre, P., Lee, M.D., Devidas, S., Guggino, W.B., Sasaki, S., Uchida, S., Kuwahara, M., Fushimi, K., Marumo, F., Verkman, A.S. et al. (1997). Aquaporins and ion conductance. Science275, 1490–1492.10.1126/science.275.5305.1490Search in Google Scholar
Alcayaga, C., Cecchi, X., Alvarez, O., and Latorre, R. (1989). Streaming potential measurements in Ca2+-activated K+ channels from skeletal and smooth muscle. Coupling of ion and water fluxes. Biophys. J.55, 367–371.Search in Google Scholar
Anthony, T.L., Brooks, H.L., Boassa, D., Leonov, S., Yanochko, G.M., Regan, J.W., and Yool, A.J. (2000). Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. Mol. Pharmacol.57, 576–588.10.1124/mol.57.3.576Search in Google Scholar
Boassa, D. and Yool, A.J. (2002). A fascinating tail: cGMP activation of aquaporin-1 ion channels. Trends Pharmacol. Sci.23, 558–562.10.1016/S0165-6147(02)02112-0Search in Google Scholar
Borgnia, M.J., Kozono, D., Calamita, G., Maloney, P.C., and Agre, P. (1999). Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol.291, 1169–1179.Search in Google Scholar
Chakrabarti, N., Tajkhorshid, E., Roux, B., and Pomes, R. (2004). Molecular basis of proton blockage in aquaporins. Structure12, 65–74.10.1016/j.str.2003.11.017Search in Google Scholar
Chandy, G., Zampighi, G.A., Kreman, M., and Hall, J.E. (1997). Comparison of the water transporting properties of MIP and AQP1. J. Membr. Biol.159, 29–39.10.1007/s002329900266Search in Google Scholar
de Groot, B.L., Frigato, T., Helms, V., and Grubmüller, H. (2003). The mechanism of proton exclusion in the aquaporin-1 water channel. J. Mol. Biol.333, 279–293.10.1016/j.jmb.2003.08.003Search in Google Scholar
Dean, R.M., Rivers, R.L., Zeidel, M.L., and Roberts, D.M. (1999). Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry38, 347–353.Search in Google Scholar
Finkelstein, A. 1987. Water movement through lipid bilayers, pores, and plasma membranes (New York, USA: J. Wiley & Sons).Search in Google Scholar
Firsov, D., Schild, L., Gautschi, I., Merillat, A.M., Schneeberger, E., and Rossier, B.C. (1996). Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc. Natl. Acad. Sci. USA93, 15370–15375.10.1073/pnas.93.26.15370Search in Google Scholar
Fotiadis, D., Suda, K., Tittmann, P., Jenö, P., Philippsen, A., Müller, D.J., Gross, H., and Engel, A. (2002). Identification and structure of a putative Ca2+-binding domain at the C-terminus of AQP1. J. Mol. Biol.318, 1381–1394.10.1016/S0022-2836(02)00143-2Search in Google Scholar
Fujiyoshi, Y., Mitsuoka, K., de Groot, B.L., Philippsen, A., Grubmüller, H., Agre, P., and Engel, A. (2002). Structure and function of water channels. Curr. Opin. Struct. Biol.12, 509–515.10.1016/S0959-440X(02)00355-XSearch in Google Scholar
Hasegawa, H., Skach, W., Baker, O., Calayag, M.C., Lingappa, V., and Verkman, A.S. (1992). A multifunctional aqueous channel formed by CFTR. Science258, 1477–1479.10.1126/science.1279809Search in Google Scholar
Hill, W.G. and Zeidel, M.L. (2000). Reconstituting the barrier properties of a water-tight epithelial membrane by design of leaflet-specific liposomes. J. Biol. Chem.275, 30176–30185.10.1074/jbc.M003494200Search in Google Scholar
Hille, B. 2001. Ion Channels of Excitable Membranes (Sunderland, MA, USA: Sinauer Associates, Inc.).Search in Google Scholar
Ikeda, M., Beitz, E., Kozono, D., Guggino, W.B., Agre, P., and Yasui, M. (2002). Characterization of aquaporin-6 as a nitrate channel in mammalian cells: requirement of pore-lining residue threonine-63. J. Biol. Chem.277, 39873–39879.10.1074/jbc.M207008200Search in Google Scholar
Ismailov, I.I., Shlyonsky, V.G., and Benos, D.J. (1997). Streaming potential measurements in abg-rat epithelial Na+-channel in planar lipid bilayers. Proc. Natl. Acad. Sci. USA94, 7651–7654.10.1073/pnas.94.14.7651Search in Google Scholar
Jensen, M.O., Tajkhorshid, E., and Schulten, K. (2003). Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys. J.85, 2884–2899.10.1016/S0006-3495(03)74711-0Search in Google Scholar
Krylov, A.V., Pohl, P., Zeidel, M.L., and Hill, W.G. (2001). Water permeability of asymmetric planar lipid bilayers: leaflets of different composition offer independent and additive resistances to permeation. J. Gen. Physiol.118, 333–340.10.1085/jgp.118.4.333Search in Google Scholar
Lorenz, D., Krylov, A., Hahm, D., Hagen, V., Rosenthal, W., Pohl, P., and Maric, K. (2003). Cyclic AMP is sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO Rep.4, 88–93.10.1038/sj.embor.embor711Search in Google Scholar
Ma, T., Yang, B., and Verkman, A.S. (1997). Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem. Biophys. Res. Commun.240, 324–328.10.1006/bbrc.1997.7664Search in Google Scholar
Matthay, M.A., Folkesson, H.G., and Clerici, C. (2002). Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol. Rev.82, 569–600.10.1152/physrev.00003.2002Search in Google Scholar
Miller, C. (1982). Coupling of water and ion fluxes in a K+-selective channel of sarcoplasmic reticulum. Biophys. J.38, 227–230.10.1016/S0006-3495(82)84552-9Search in Google Scholar
Nielsen, S., Smith, B.L., Christensen, E.I., Knepper, M.A., and Agre, P. (1993). CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J. Cell Biol.120, 371–383.10.1083/jcb.120.2.371Search in Google Scholar
Nielsen, S., Frokiaer, J., Marples, D., Kwon, T.H., Agre, P., and Knepper, M.A. (2002). Aquaporins in the kidney: from molecules to medicine. Physiol. Rev.82, 205–244.10.1152/physrev.00024.2001Search in Google Scholar
Nilius, B. (2004). Is the volume-regulated anion channel VRAC a ‘water-permeable’ channel? Neurochem. Res.29, 3–8.Search in Google Scholar
Paula, S., Akeson, M., and Deamer, D. (1999). Water transport by the bacterial channel α-hemolysin. Biochim. Biophys. Acta1418, 117–126.10.1016/S0005-2736(99)00031-0Search in Google Scholar
Pohl, P. and Saparov, S.M. (2000). Solvent drag across gramicidin channels demonstrated by microelectrodes. Biophys. J.78, 2426–2434.10.1016/S0006-3495(00)76786-5Search in Google Scholar
Pohl, P., Saparov, S.M., and Antonenko, Y.N. (1997). The effect of a transmembrane osmotic flux on the ion concentration distribution in the immediate membrane vicinity measured by microelectrodes. Biophys. J.72, 1711–1718.10.1016/S0006-3495(97)78817-9Search in Google Scholar
Pohl, P., Saparov, S.M., Borgnia, M.J., and Agre, P. (2001). High selectivity of water channel activity measured by voltage clamp: analysis of planar lipid bilayers reconstituted with purified AqpZ. Proc. Natl. Acad. Sci. USA98, 9624–9629.10.1073/pnas.161299398Search in Google Scholar
Sabirov, R.Z., Morishima, S., and Okada, Y. (1998). Probing the water permeability of ROMK1 and amphotericin B channels using Xenopus oocytes. Biochim. Biophys. Acta1368, 19–26.10.1016/S0005-2736(97)00176-4Search in Google Scholar
Saparov, S.M. and Pohl, P. (2004). Beyond the diffusion limit: water flow through the empty bacterial potassium channel. Proc. Natl. Acad. Sci. USA101, 4805–4809.10.1073/pnas.0308309101Search in Google Scholar
Saparov, S.M., Antonenko, Y.N., Koeppe, R.E., and Pohl, P. (2000). Desformylgramicidin: a model channel with an extremely high water permeability. Biophys. J.79, 2526–2534.10.1016/S0006-3495(00)76493-9Search in Google Scholar
Saparov, S.M., Kozono, D., Rothe, U., Agre, P., and Pohl, P. (2001). Water and ion permeation of aquaporin-1 in planar lipid bilayers: major differences in structural determinants and stoichiometry. J. Biol. Chem.276, 31515–31520.10.1074/jbc.M104267200Search in Google Scholar PubMed
Schafer, J.A. (2002). Abnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct. Am. J. Physiol. Renal Physiol.283, F221–F235.10.1152/ajprenal.00068.2002Search in Google Scholar PubMed
Spring, K.R. (1999). Epithelial fluid transport-a century of investigation. News Physiol. Sci.14, 92–98.10.1152/physiologyonline.1999.14.3.92Search in Google Scholar PubMed
Sui, H., Han, B.G., Lee, J.K., Walian, P., and Jap, B.K. (2001). Structural basis of water-specific transport through the AQP1 water channel. Nature414, 872–878.10.1038/414872aSearch in Google Scholar PubMed
Tsunoda, S.P., Wiesner, B., Lorenz, D., Rosenthal, W., and Pohl, P. (2004). Aquaporin-1, nothing but a water channel. J. Biol. Chem.279, 11364–11367.10.1074/jbc.M310881200Search in Google Scholar PubMed
Yang, B. and Verkman, A.S. (1997). Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J. Biol. Chem.272, 16140–16146.10.1074/jbc.272.26.16140Search in Google Scholar PubMed
Yang, B. and Verkman, A.S. (1998). Urea transporter UT3 functions as an efficient water channel. Direct evidence for a common water/urea pathway. J. Biol. Chem.273, 9369–9372.10.1074/jbc.273.16.9369Search in Google Scholar PubMed
Yasui, M., Hazama, A., Kwon, T.H., Nielsen, S., Guggino, W.B., and Agre, P. (1999). Rapid gating and anion permeability of an intracellular aquaporin. Nature402, 184–187.10.1038/46045Search in Google Scholar PubMed
Yool, A.J. and Weinstein, A.M. (2002). New roles for old holes: ion channel function in aquaporin-1. News Physiol. Sci.17, 68–72.10.1152/nips.01372.2001Search in Google Scholar PubMed
Yool, A.J., Stamer, W.D., and Regan, J.W. (1996). Forskolin stimulation of water and cation permeability in aquaporin-1 water channels. Science273, 1216–1218.10.1126/science.273.5279.1216Search in Google Scholar PubMed
Zeidel, M.L., Ambudkar, S.V., Smith, B.L., and Agre, P. (1992). Reconstituion of functional water channels in liposomes containing purified red cell chip28 protein. Biochemistry31, 7436–7440.10.1021/bi00148a002Search in Google Scholar PubMed
Zhou, Y. and MacKinnon, R. (2003). The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol.333, 965–975.10.1016/j.jmb.2003.09.022Search in Google Scholar PubMed
© Walter de Gruyter
Articles in the same Issue
- Wolfgang Baumeister – Felix Hoppe-Seyler Lecturer 2004
- Mapping molecular landscapes inside cells
- Paper of the Year 2003: Award to Dieter Hoffmann
- Structural basis of denitrification
- Roles of nectins in cell adhesion, migration and polarization
- Designing novel spectral classes of proteins with a tryptophan-expanded genetic code
- Imprinted small RNA genes
- Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction
- Combined transport of water and ions through membrane channels
- How do ABC transporters drive transport?
- X-ray structure of fumarylacetoacetate hydrolase family member Homo sapiens FLJ36880
- Generation of glycogen- and albumin-producing hepatocyte-like cells from embryonic stem cells
- Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM
- A database search for double-strand containing RNAs in Dictyostelium discoideum
- Segregation of partly melted molecules: isolation of CpG islands by polyacrylamide gel electrophoresis
- A monomeric mutant of restriction endonuclease EcoRI nicks DNA without sequence specificity
Articles in the same Issue
- Wolfgang Baumeister – Felix Hoppe-Seyler Lecturer 2004
- Mapping molecular landscapes inside cells
- Paper of the Year 2003: Award to Dieter Hoffmann
- Structural basis of denitrification
- Roles of nectins in cell adhesion, migration and polarization
- Designing novel spectral classes of proteins with a tryptophan-expanded genetic code
- Imprinted small RNA genes
- Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction
- Combined transport of water and ions through membrane channels
- How do ABC transporters drive transport?
- X-ray structure of fumarylacetoacetate hydrolase family member Homo sapiens FLJ36880
- Generation of glycogen- and albumin-producing hepatocyte-like cells from embryonic stem cells
- Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM
- A database search for double-strand containing RNAs in Dictyostelium discoideum
- Segregation of partly melted molecules: isolation of CpG islands by polyacrylamide gel electrophoresis
- A monomeric mutant of restriction endonuclease EcoRI nicks DNA without sequence specificity