How do ABC transporters drive transport?
-
Chris Van Der Does
Abstract
Members of the ATP-binding cassette (ABC) superfamily are integral membrane proteins that hydrolyze ATP to drive transport. In the last two decades these proteins have been extensively characterized on a genetic and biochemical level, and in recent years high-resolution crystal structures of several nucleotide-binding domains and full-length transporters have extended our knowledge. Here we discuss the possible mechanisms of transport that have been derived from these crystal structures and the extensive available biochemical data.
References
Abramson, J., Smirnova, I., Kasho, V., Verner, G., Iwata, S., and Kaback, H.R. (2003). The lactose permease of Escherichia coli: overall structure, the sugar-binding site and the alternating access model for transport. FEBS Lett.555, 96–101.10.1016/S0014-5793(03)01087-1Search in Google Scholar
Arora, S., Lapinski, P.E., and Raghavan, M. (2001). Use of chimeric proteins to investigate the role of transporter associated with antigen processing (TAP) structural domains in peptide binding and translocation. Proc. Natl. Acad. Sci. USA98, 7241–7246.10.1073/pnas.131132198Search in Google Scholar
Austermuhle, M.I., Hall, J.A., Klug, C.S., and Davidson, A.L. (2004). Maltose binding protein is open in the catalytic transition state for ATP hydrolysis during maltose transport. J. Biol. Chem.279, 28243–28250.10.1074/jbc.M403508200Search in Google Scholar
Bianchet, M.A., Ko, Y.H., Amzel, L.M., and Pedersen, P.L. (1997). Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). J. Bioenerg. Biomembr.29, 503–524.10.1023/A:1022443209010Search in Google Scholar
Borths, E.L., Locher, K.P., Lee, A.T., and Rees, D.C. (2002). The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc. Natl. Acad. Sci. USA99, 16642–16647.10.1073/pnas.262659699Search in Google Scholar
Chang, G., and Roth, C.B. (2001). Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science293, 1793–1800.Search in Google Scholar
Chang, G. (2003). Structure of MsbA from Vibrio cholera: a multidrug resistance ABC transporter homolog in a closed conformation. J. Mol. Biol.330, 419–430.10.1016/S0022-2836(03)00587-4Search in Google Scholar
Chen, J., Sharma, S., Quiocho, F.A., and Davidson, A.L. (2001). Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport. Proc. Natl. Acad. Sci. USA98, 1525–1530.10.1073/pnas.98.4.1525Search in Google Scholar PubMed PubMed Central
Chen, J., Lu, G., Lin, J., Davidson, A.L., and Quiocho, F.A. (2003). A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell12, 651–661.10.1016/j.molcel.2003.08.004Search in Google Scholar PubMed
Chen, M., Abele, R. and Tampé, R. (2003). Peptides induce ATP hydrolysis at both subunits of the transporter associated with antigen processing. J. Biol. Chem.278, 29686–29692.10.1074/jbc.M302757200Search in Google Scholar PubMed
Davidson, A.L., and Chen, J. (2004). ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem.73, 241–268.10.1146/annurev.biochem.73.011303.073626Search in Google Scholar PubMed
Davidson, A.L., Shuman, H.A., and Nikaido, H. (1992). Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc. Natl. Acad. Sci. USA89, 2360–2364.10.1073/pnas.89.6.2360Search in Google Scholar
Daumke, O. and Knittler, M.R. (2001). Functional asymmetry of the ATP-binding-cassettes of the ABC transporter TAP is determined by intrinsic properties of the nucleotide binding domains. Eur. J. Biochem.268, 4776–4786.10.1046/j.1432-1327.2001.02406.xSearch in Google Scholar
Diederichs, K., Diez, J., Greller, G., Müller, C., Breed, J., Schnell, C. Vonrhein, C., Boos, W., and Welte, W. (2000). Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J.19, 5951–5961.10.1093/emboj/19.22.5951Search in Google Scholar
Fetsch, E.E., and Davidson, A.L. (2002). Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter. Proc. Natl. Acad. Sci. USA99, 9685–9690.10.1073/pnas.152204499Search in Google Scholar
Gabriel, M.P., Storm, J., Rothnie, A., Taylor, A.M., Linton, K.J., Kerr, I.D., and Callaghan, R. (2003). Communication between the nucleotide binding domains of P-glycoprotein occurs via conformational changes that involve residue 508. Biochemistry42, 7780–7789.10.1021/bi0341049Search in Google Scholar
Gaudet, R., and Wiley, D.C. (2001). Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing. EMBO J.20, 4964–4972.10.1093/emboj/20.17.4964Search in Google Scholar
Higgins, C.F. (1992). ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol.8, 67–113.10.1146/annurev.cb.08.110192.000435Search in Google Scholar
Hopfner, K.P., Karcher, A., Shin, D.S., Craig, L., Arthur, L.M., Carney, J.P., and Tainer, J.A. (2000). Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double strand break repair and the ABC-ATPase superfamily. Cell101, 789–800.10.1016/S0092-8674(00)80890-9Search in Google Scholar
Huang, Y., Lemieux, M.J., Song, J., Auer, M., and Wang, D.N. (2003). Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science301, 616–620.10.1126/science.1087619Search in Google Scholar PubMed
Hung, L.W., Wang, I.X., Nikaido, K., Liu, P.Q., Ames, G.F., and Kim, S.H. (1998). Crystal structure of the ATP-binding subunit of an ABC transporter. Nature396, 703–707.10.1038/25393Search in Google Scholar PubMed
Janas, E., Hofacker, M., Chen, M., Gompf, S., van der Does, C., and Tampé, R. (2003). The ATP hydrolysis cycle of the nucleotide-binding domain of the mitochondrial ATP-binding cassette transporter Mdl1p. J. Biol. Chem.278, 26862–26869.10.1074/jbc.M301227200Search in Google Scholar
Jones, P.M., and George, A.M. (1999). Subunit interactions in ABC transporters: towards a functional architecture. FEMS Microbiol. Lett.179, 187–202.10.1111/j.1574-6968.1999.tb08727.xSearch in Google Scholar
Jones, P.M., and George, A.M. (2002). Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Proc. Natl. Acad. Sci. USA99, 12639–12644.10.1073/pnas.152439599Search in Google Scholar
Jones, P.M., and George, A.M. (2004). The ABC transporter structure and mechanism: perspectives on recent research. Cell. Mol. Life Sci.61, 682–699.10.1007/s00018-003-3336-9Search in Google Scholar
Julien, M., and Gros, P. (2000). Nucleotide-induced conformational changes in P-glycoprotein and in nucleotide binding site mutants monitored by trypsin sensitivity. Biochemistry39, 4559–4568.10.1021/bi992744zSearch in Google Scholar
Karttunen, J.T., Lehner P.J., Gupta S.S., Hewitt E.W., and Cresswell P. (2001). Distinct functions and cooperative interaction of the subunits of the transporter associated with antigen processing (TAP). Proc. Natl. Acad. Sci. USA98, 7431–7436.10.1073/pnas.121180198Search in Google Scholar
Karpowich, N., Martsinkevich, O., Millen, L., Yuan, Y.R., Dai, P.L., MacVey, K., Thomas, P.J., and Hunt, J.F. (2001). Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure9, 571–586.10.1016/S0969-2126(01)00617-7Search in Google Scholar
Karpowich, N.K., Huang, H.H., Smith, P.C., and Hunt, J.F. (2003). Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding. J. Biol. Chem.278, 8429–8434.10.1074/jbc.M212239200Search in Google Scholar PubMed
Lewis, H.A., Buchanan, S.G., Burley, S.K., Conners, K., Dickey, M., Dorwart, M. et al. (2004). Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J.23, 282–293.10.1038/sj.emboj.7600040Search in Google Scholar PubMed PubMed Central
Liu P.Q. and Ames G.F. (1998). In vitro disassembly and reassembly of an ABC transporter, the histidine permease. Proc. Natl. Acad. Sci. USA95, 3495–3500.10.1073/pnas.95.7.3495Search in Google Scholar PubMed PubMed Central
Locher, K.P., Lee, A.T., and Rees, D.C. (2002). The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science296, 1091–1098.Search in Google Scholar
Martin, C., Berridge, G., Mistry, P., Higgins, C., Charlton, P., and Callaghan, R. (2000). Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis. Biochemistry39, 11901–11906.10.1021/bi000559bSearch in Google Scholar PubMed
Moody, J.E., Millen, L., Binns, D., Hunt, J.F., and Thomas, P.J. (2002). Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J. Biol. Chem.277, 21111–21114.10.1074/jbc.C200228200Search in Google Scholar PubMed PubMed Central
Mourez, M., Hofnung, M., and Dassa, E. (1997). Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J.16, 3066–3077.10.1093/emboj/16.11.3066Search in Google Scholar PubMed PubMed Central
Patzlaff, J.S., Van der Heide, T., and Poolman, B. (2003). The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem.278, 29546–29551.10.1074/jbc.M304796200Search in Google Scholar PubMed
Qu, Q., Chu, J.W., and Sharom, F.J. (2003a). Transition state P-glycoprotein binds drugs and modulators with unchanged affinity, suggesting a concerted transport mechanism. Biochemistry42, 1345–1353.10.1021/bi0267745Search in Google Scholar PubMed
Qu, Q., Russell, P.L., and Sharom, F.J. (2003b). Stoichiometry and affinity of nucleotide binding to P-glycoprotein during the catalytic cycle. Biochemistry42, 1170–1177.10.1021/bi026555jSearch in Google Scholar PubMed
Quiocho, F.A., and Ledvina, P.S. (1996). Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol.20, 17–25.10.1111/j.1365-2958.1996.tb02484.xSearch in Google Scholar PubMed
Reuter, G., Janvilisri, T., Venter, H., Shahi, S., Balakrishnan, L., and van Veen, H.W. (2003). The ATP binding cassette multidrug transporter LmrA and lipid transporter MsbA have overlapping substrate specificities. J. Biol. Chem.278, 35193–35198.10.1074/jbc.M306226200Search in Google Scholar PubMed
Rosenberg, M.F., Velarde, G., Ford, R.C., Martin, C., Berridge, G., Kerr, I.D., Callaghan, R., Schmidlin, A., Wooding, C., Linton, K.J., and Higgins, C.F. (2001). Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle. EMBO J.20, 5615–5625.10.1093/emboj/20.20.5615Search in Google Scholar PubMed PubMed Central
Sauna, Z.E., and Ambudkar, S.V. (2000). Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein. Proc. Natl. Acad. Sci. USA97, 2515–2520.10.1073/pnas.97.6.2515Search in Google Scholar PubMed PubMed Central
Saveanu, L., Daniel, S., van Endert, P.M. (2001). Distinct functions of the ATP binding cassettes of transporters associated with antigen processing: a mutational analysis of Walker A and B sequences. J. Biol. Chem.276, 22107–22113.10.1074/jbc.M011221200Search in Google Scholar
Schmitt, L., and Tampé, R. (2002). Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol.12, 754–760.10.1016/S0959-440X(02)00399-8Search in Google Scholar
Schmitt, L., Benabdelhak, H., Blight, M.A., Holland, I.B., and Stubbs, M.T. (2003). Crystal structure of the nucleotide-binding domain of the ABC-transporter haemolysin B: identification of a variable region within ABC helical domains. J. Mol. Biol.330, 333–342.10.1016/S0022-2836(03)00592-8Search in Google Scholar
Senior, A.E., al Shawi, M.K., and Urbatsch, I.L. (1995). The catalytic cycle of P-glycoprotein. FEBS Lett.377, 285–289.Search in Google Scholar
Sharma, S., and Davidson, A.L. (2000). Vanadate-induced trapping of nucleotides by purified maltose transport complex requires ATP hydrolysis. J. Bacteriol.182, 6570–6576.10.1128/JB.182.23.6570-6576.2000Search in Google Scholar
Shilling, R.A., Balakrishnan, L., Shahi, S., Venter, H., and Van Veen, H.W. (2003). A new dimer interface for an ABC transporter. Int. J. Antimicrob. Agents22, 200–204.10.1016/S0924-8579(03)00212-7Search in Google Scholar
Smith, P.C., Karpowich, N., Millen, L., Moody, J.E., Rosen, J., Thomas, P.J., and Hunt, J.F. (2002). ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell10, 139–149.10.1016/S1097-2765(02)00576-2Search in Google Scholar
Tombline, G, Bartholomew, L., Gimi, K., Tyndall, G.A., and Senior, A.E. (2004a). Synergy between conserved ABC signature Ser residues in P-glycoprotein catalysis. J. Biol. Chem.279, 5363–5373.10.1074/jbc.M311964200Search in Google Scholar PubMed
Tombline, G., Bartholomew, L.A., Urbatsch, I.L., and Senior, A.E. (2004b). Combined mutation of catalytic glutamate residues in the two nucleotide binding domains of P-glycoprotein generates a conformation that binds ATP and ADP tightly. J. Biol. Chem., in press.10.1074/jbc.M404689200Search in Google Scholar PubMed
Urbatsch, I.L., Sankaran, B., Weber, J., and Senior, A.E. (1995). P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J. Biol. Chem.270, 19383–19390.10.1074/jbc.270.33.19383Search in Google Scholar PubMed
Urbatsch, I.L., Tyndall, G.A., Tombline, G., and Senior, A.E. (2003). P-glycoprotein catalytic mechanism: studies of the ADP-vanadate inhibited state. J. Biol. Chem.278, 23171–23179.10.1074/jbc.M301957200Search in Google Scholar PubMed
Van der Does, C., and Tampé, R. (2004). Changing orders – primary and secondary membrane transporters revised. ChemBioChem, in press.10.1002/cbic.200400085Search in Google Scholar
Van Veen, H.W., Margolles, A., Muller, M., Higgins, C.F., and Konings, W.N. (2000). The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J.19, 2503–2514.10.1093/emboj/19.11.2503Search in Google Scholar
Verdon, G., Albers, S.V., Dijkstra, B.W., Driessen, A.J.M., and Thunnissen, A.M. (2003a). Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus: nucleotide-free and nucleotide-bound conformations. J. Mol. Biol.330, 343–358.10.1016/S0022-2836(03)00575-8Search in Google Scholar
Verdon, G., Albers, S.V., van Oosterwijk, N., Dijkstra, B.W., Driessen, A.J.M., Thunnissen, A.M. (2003b). Formation of the productive ATP-Mg2+-bound dimer of GlcV, an ABC-ATPase from Sulfolobus solfataricus. J. Mol. Biol.334, 255–267.10.1016/j.jmb.2003.08.065Search in Google Scholar PubMed
Vergani, P., Nairn, A.C. and Gadsby, D.C. (2003). On the mechanism of MgATP-dependent gating of CFTR Cl- channels. J. Gen. Physiol.120, 17–36.10.1085/jgp.20028673Search in Google Scholar PubMed PubMed Central
Yuan, Y.R., Blecker, S., Martsinkevich, O., Millen, L., Thomas, P.J., and Hunt, J.F. (2001). The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J. Biol. Chem.276, 32313–32321.10.1074/jbc.M100758200Search in Google Scholar PubMed
© Walter de Gruyter
Articles in the same Issue
- Wolfgang Baumeister – Felix Hoppe-Seyler Lecturer 2004
- Mapping molecular landscapes inside cells
- Paper of the Year 2003: Award to Dieter Hoffmann
- Structural basis of denitrification
- Roles of nectins in cell adhesion, migration and polarization
- Designing novel spectral classes of proteins with a tryptophan-expanded genetic code
- Imprinted small RNA genes
- Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction
- Combined transport of water and ions through membrane channels
- How do ABC transporters drive transport?
- X-ray structure of fumarylacetoacetate hydrolase family member Homo sapiens FLJ36880
- Generation of glycogen- and albumin-producing hepatocyte-like cells from embryonic stem cells
- Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM
- A database search for double-strand containing RNAs in Dictyostelium discoideum
- Segregation of partly melted molecules: isolation of CpG islands by polyacrylamide gel electrophoresis
- A monomeric mutant of restriction endonuclease EcoRI nicks DNA without sequence specificity
Articles in the same Issue
- Wolfgang Baumeister – Felix Hoppe-Seyler Lecturer 2004
- Mapping molecular landscapes inside cells
- Paper of the Year 2003: Award to Dieter Hoffmann
- Structural basis of denitrification
- Roles of nectins in cell adhesion, migration and polarization
- Designing novel spectral classes of proteins with a tryptophan-expanded genetic code
- Imprinted small RNA genes
- Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction
- Combined transport of water and ions through membrane channels
- How do ABC transporters drive transport?
- X-ray structure of fumarylacetoacetate hydrolase family member Homo sapiens FLJ36880
- Generation of glycogen- and albumin-producing hepatocyte-like cells from embryonic stem cells
- Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM
- A database search for double-strand containing RNAs in Dictyostelium discoideum
- Segregation of partly melted molecules: isolation of CpG islands by polyacrylamide gel electrophoresis
- A monomeric mutant of restriction endonuclease EcoRI nicks DNA without sequence specificity