Startseite Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction

  • Heinz-Jürgen Steinhoff
Veröffentlicht/Copyright: 1. Juni 2005
Biological Chemistry
Aus der Zeitschrift Band 385 Heft 10

Abstract

Recent developments including pulse and multi-frequency techniques make the combination of site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy an attractive approach for the study of protein-protein or protein-oligonucleotide interaction. Analysis of the spin label side chain mobility, its solvent accessibility, the polarity of the spin label micro-environment and distances between spin label side chains allow the modeling of protein domains or protein-protein interaction sites and their conformational changes with a spatial resolution at the level of the backbone fold. Structural changes can be detected with millisecond time resolution. Inter- and intra-molecular distances are accessible in the range from approximately 0.5 to 8 nm by the combination of continuous wave and pulse EPR methods. Recent applications include the study of transmembrane substrate transport, membrane channel gating, gene regulation and signal transfer.

:

References

Altenbach, C., Oh, K. J., Trabanino, R. J., Hideg, K. and Hubbell, W. L. (2001). Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry40, 15471–15482.10.1021/bi011544wSuche in Google Scholar

Altenbach, C., Yang, K., Farrens, D. L., Farahbakhsh, Z. T., Khorana, H. G. and Hubbell, W. L. (1996). Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin – a site-directed spin-labeling study. Biochemistry35, 12470–12478.10.1021/bi960849lSuche in Google Scholar

Berliner, L. J., Grunwald, J., Hankovszky, H. O. and Hideg, K. (1982). A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Anal. Biochem.119, 450–455.10.1016/0003-2697(82)90612-1Suche in Google Scholar

Borbat, P. P. and Freed, J. H. (1999). Multi-quantum ESR and distance measurements. Chem. Phys. Lett.313, 145–154.10.1016/S0009-2614(99)00972-0Suche in Google Scholar

Cai, K. W., Langen, R., Hubbell, W. L. and Khorana, H. G. (1997). Structure and function in rhodopsin – topology of the C-terminal polypeptide chain in relation to the cytoplasmic loops. Proc. Natl. Acad. Sci. USA94, 14267–14272.10.1073/pnas.94.26.14267Suche in Google Scholar

Ciecierska-Tworek, Z., Van, S. P. and Griffith, O. H. (1973). Electron-electron dipolar splitting anisotropie of a dinitroxide oriented in a crystalline matrix. J. Mol. Struct.16, 139–148.10.1016/0022-2860(73)80049-3Suche in Google Scholar

Columbus, L. and Hubbell, W. L. (2002). A new spin on protein dynamics. Trends Biochem. Sci.27, 288–295.10.1016/S0968-0004(02)02095-9Suche in Google Scholar

Deparade, M. P., Gloggler, K. and Trommer, W. E. (1981). Isolation and properties of glyceraldehyde-3-phosphate dehydrogenase from a sturgeon from the Caspian Sea and its interaction with spin-labeled NAD+ derivatives. Biochim. Biophys. Acta659, 422–433.10.1016/0005-2744(81)90068-1Suche in Google Scholar

Eaton, G. R., Eaton, S. S. and Berliner, L. J. (2000). Distance Measurements in Biological Systems (New York, USA: Kluwer).Suche in Google Scholar

Eaton, S. S., More, K. M., Sawant, B. M. and Eaton, G. R. (1983). Use of the EPR half-field transition to determine the interspin distance and the orientation of the interspin vector in systems with two unpaired electrons. J. Am. Chem. Soc.105, 6560–6567.10.1021/ja00360a005Suche in Google Scholar

Essen, L. O., Siegert, R., Lehmannn, W. D. and Oesterhelt, D. (1998). Lipid patches in membrane protein oligomers – crystal structure of the bacteriorhodopsin-lipid complex. Proc. Natl. Acad. Sci. USA95, 11673–11678.10.1073/pnas.95.20.11673Suche in Google Scholar PubMed PubMed Central

Fanucci, G. E., Lee, J. Y. and Cafiso, D. S. (2003). Spectroscopic evidence that osmolytes used in crystallization buffers inhibit a conformation change in a membrane protein. Biochemistry42, 13106–13112.10.1021/bi035439tSuche in Google Scholar

Farahbakhsh, Z., Hideg, K. and Hubbell, W. L. (1993). Photoactivated conformational changes in rhodopsin: a time resolved spin label study. Science262, 1416–1420.10.1126/science.8248781Suche in Google Scholar

Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. and Khorana, H. G. (1996). Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science274, 768–770.10.1126/science.274.5288.768Suche in Google Scholar

Feix, J. B. and Klug, C. S. (1998). Site-directed spin labeling of membrane proteins and peptide-membrane interactions. In: Spin Labeling: The Next Millenium, L. J. Berliner, ed. (New York, USA: Plenum Press), pp. 251–281.Suche in Google Scholar

Gordeliy, V. I., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schlesinger, R., Büldt, G., Savopol, T. A., Scheidig, J. et al. (2002). Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature419, 484–487.10.1038/nature01109Suche in Google Scholar

Hecht, B., Müller, G. and Hillen, W. (1993). Noninducible Tet repressor mutations map from the operator binding motif to the C-terminus. J. Bacteriol.175, 1206–1210.10.1128/jb.175.4.1206-1210.1993Suche in Google Scholar

Hinrichs, W., Kisker, C., Düvel, M., Müller, A., Tovar, K., Hillen, W. and Saenger, W. (1994). Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science264, 418–420.10.1126/science.8153629Suche in Google Scholar

Hubbell, W. L. and Altenbach, C. (1994). Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr. Opin. Struct. Biol.4, 566–573.10.1016/S0959-440X(94)90219-4Suche in Google Scholar

Hubbell, W. L., McHaourab, H. S., Altenbach, C. and Lietzow, M. A. (1996). Watching proteins move using site-directed spin labeling. Structure4, 779–783.10.1016/S0969-2126(96)00085-8Suche in Google Scholar

Hubbell, W. L., Gross, A., Langen, R. and Lietzow, M. A. (1998). Recent advances in site-directed spin labeling of proteins. Curr. Opin. Struct. Biol.8, 649–656.10.1016/S0959-440X(98)80158-9Suche in Google Scholar

Hubbell, W. L., Cafiso, D. S. and Altenbach, C. (2000). Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol.7, 735–739.10.1038/78956Suche in Google Scholar PubMed

Hustedt, E. J. and Beth, A. H. (1999). Nitroxide spin-spin interactions: applications to protein structure and dynamics. Annu. Rev. Biophys. Biomol. Struct.28, 129–153.10.1146/annurev.biophys.28.1.129Suche in Google Scholar

Hustedt, E. J., Smirnov, A. I., Laub, C. F., Cobb, C. E. and Beth, A. H. (1997). Molecular distances from dipolar coupled spin-labels – the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys. J.72, 1861–1877.10.1016/S0006-3495(97)78832-5Suche in Google Scholar

Jager, J. and Pata, J. (1999). Getting a grip: polymerases and their substrate complexes. Curr. Opin. Struct. Biol.9, 21–28.10.1016/S0959-440X(99)80004-9Suche in Google Scholar

Jeschke, G. (2002a). Determination of the nanostructure of polymer materials by electron paramagnetic resonance spectroscopy. Macromol. Rapid Commun.23, 227–246.10.1002/1521-3927(20020301)23:4<227::AID-MARC227>3.0.CO;2-DSuche in Google Scholar

Jeschke, G. (2002b). Distance measurements in the nanometer range by pulse EPR. Chem. Phys. Chem.3, 927–932.10.1002/1439-7641(20021115)3:11<927::AID-CPHC927>3.0.CO;2-QSuche in Google Scholar

Jeschke, G., Pannier, M., Godt, A. and Spiess, H. W. (2000). Dipolar spectroscopy and spin alignment in electron paramagnetic resonance. Chem. Phys. Lett.331, 234–252.10.1016/S0009-2614(00)01171-4Suche in Google Scholar

Jeschke, G., Koch, A., Jonas, U. and Godt, A. (2002). Direct conversion of EPR dipolar time evolution data to distance distributions. J. Magn. Reson.155, 72–82.10.1006/jmre.2001.2498Suche in Google Scholar

Jeschke, G., Bender, A., Paulsen, H., Zimmermann, H. and Godt, A. (2004a). Sensitivity enhancement in pulse EPR distance measurements. J. Magn. Reson.169, 1–12.10.1016/j.jmr.2004.03.024Suche in Google Scholar

Jeschke, G., Wegener, C., Nietschke, M., Jung, H. and Steinhoff, H.-J. (2004b). Inter-residual distance determination by four-pulse DEER in an integral membrane protein: the Na+/proline transporter PutP of Escherichia coli. Biophys. J.86, 2551–2557.10.1016/S0006-3495(04)74310-6Suche in Google Scholar

Jung, H. (2001). Towards the molecular mechanism of Na+/solute symport in prokaryotes. Biochim. Biophys. Acta1505, 131–143.10.1016/S0005-2728(00)00283-8Suche in Google Scholar

Jung, H., Rübenhagen, R., Tebbe, S., Leifker, K., Tholema, N., Quick, M. and Schmid, R. (1998). Topology of the Na+/proline transporter of Escherichia coli. J. Biol. Chem.273, 26400–26407.10.1074/jbc.273.41.26400Suche in Google Scholar

Jung, K., Voss, J., He, M., Hubbell, W. L. and Kaback, H. R. (1995). Engineering a metal binding site within a polytopic membrane protein, the lactose permease of Escherichia coli. Biochemistry34, 6272–6277.10.1021/bi00019a003Suche in Google Scholar

Kensch, O., Connolly, B. A., Steinhoff, H. J., McGregor, A., Goody, R. S. and Restle, T. (2000a). HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity. J. Biol. Chem.275, 18271–18278.10.1074/jbc.M001309200Suche in Google Scholar

Kensch, O., Restle, T., Wöhrl, B. M., Goody, R. S. and Steinhoff, H.-J. (2000b). Temperature-dependent equilibrium between the open and close conformation of the p66 subunit of HIV-1 reverse transcriptase revealed by site-directed spin labelling. J. Mol. Biol.301, 1029–1039.10.1006/jmbi.2000.3998Suche in Google Scholar

Kisker, C., Hinrichs, W., Tovar, K., Hillen, W. and Saenger, W. (1995). The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J. Mol. Biol.247, 260–280.10.1006/jmbi.1994.0138Suche in Google Scholar

Klare, J., Bordignon, E., Engelhard, M. and Steinhoff, H.-J. (2004a). Sensory rhodopsin II and bacteriorhodopsin: light activated helix F movement. Photochem. Photobiol. Sci.3, 543–547.10.1039/b402656jSuche in Google Scholar

Klare, J., Gordeliy, V. I., Labahn, J., Büldt, G., Steinhoff, H.-J. and Engelhard, M. (2004b). The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett.564, 219–224.10.1016/S0014-5793(04)00193-0Suche in Google Scholar

Koteiche, H. A. and Mchaourab, H. S. (1999). Folding pattern of the α-crystallin domain in αA-crystallin determined by site-directed spin labeling. J. Mol. Biol.294, 561–577.10.1006/jmbi.1999.3242Suche in Google Scholar

Kurshev, V. V., Raitsimring, A. M. and Tsvetkov, Y. D. (1989). Selection of dipolar interaction by the 2+1 pulse train ESE. J. Magn. Reson.81, 441–454.10.1016/0022-2364(89)90080-2Suche in Google Scholar

Leigh, J. S. (1970). ESR rigid lattice line shape in a system of two interacting spins. J. Chem. Phys.52, 2608–2612.10.1063/1.1673348Suche in Google Scholar

Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. and Lanyi, J. K. (1999). Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol.291, 899–911.Suche in Google Scholar

Mchaourab, H. S. and Perozo, E. (2000). Determination of protein folds and conformational dynamics using spin-labeling EPR spectroscopy. In: Distance Measurements in Biological Systems by EPR, L. J. Berliner, S. S. Eaton and G. R. Eaton, eds. (New York, USA: Kluwer).Suche in Google Scholar

Müller, G., Hecht, B., Helbl, V., Hinrichs, W., Saenger, W. and Hillen, W. (1995). Characterization of non-inducible Tet repressor mutants suggests conformational changes necessary for induction. Nat. Struct. Biol.2, 693–703.10.1038/nsb0895-693Suche in Google Scholar

Orth, P., Schnappinger, D., Hillen, W., Saenger, W. and Hinrichs, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat. Struct. Biol.7, 215–219.Suche in Google Scholar

Pannier, M., Veit, S., Godt, A., Jeschke, G. and Spiess, H. W. (2000). Dead-time free measurement of dipole-dipole interactions between electron spins. J. Magn. Reson.142, 331–340.10.1006/jmre.1999.1944Suche in Google Scholar

Perozo, E. and Rees, D. C. (2003). Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol.13, 432–442.10.1016/S0959-440X(03)00106-4Suche in Google Scholar

Perozo, E., Cortes, D. M. and Cuello, L. G. (1998). Three-dimensional architecture of a K+ channel: implications for the mechanism of ion channel gating. Nat. Struct. Biol.5, 459–469.10.1038/nsb0698-459Suche in Google Scholar

Perozo, E., Cortes, D. M. and Cuello, L. G. (1999). Structural rearrangement underlying K+-channel activation gating. Science285, 73–78.10.1126/science.285.5424.73Suche in Google Scholar

Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. and Martinac, B. (2002). Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature418, 942–948.10.1038/nature00992Suche in Google Scholar

Persson, M., Harbridge, J. R., Hammarstrom, P., Mitri, R., Martensson, L. G., Carlsson, U., Eaton, G. R. and Eaton, S. S. (2001). Comparison of electron paramagnetic resonance methods to determine distances between spin labels on human carbonic anhydrase II. Biophys. J.80, 2886–2897.10.1016/S0006-3495(01)76254-6Suche in Google Scholar

Quick, M. and Jung, H. (1998). A conserved aspartate residue, Asp187, is important for Na+-dependent proline binding and transport by the Na+/proline transporter of Escherichia coli. Biochemistry37, 13800–13806.10.1021/bi980562jSuche in Google Scholar PubMed

Quick, M., Stölting, S. and Jung, H. (1999). Role of conserved Arg40 and Arg117 in the Na+/proline transporter of Escherichia coli. Biochemistry38, 13523–13529.10.1021/bi991256oSuche in Google Scholar PubMed

Rabenstein, M. D. and Shin, Y. K. (1995). Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA92, 8239–8243.10.1073/pnas.92.18.8239Suche in Google Scholar PubMed PubMed Central

Radzwill, N. (2001). Bestimmung der Strukturänderungen der lichtgetriebenen Protonenpumpe Bakteriorhodopsin mittels zweifacher Spinmarkierung und ESR-Spektroskopie. PhD Thesis, University of Bochum, Germany.Suche in Google Scholar

Radzwill, N., Gerwert, K. and Steinhoff, H.-J. (2001). Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin. Biophys. J.80, 2856–2866.10.1016/S0006-3495(01)76252-2Suche in Google Scholar

Schiemann, O., Piton, N., Mu, Y., Stock, G., Engels, J. W. and Prisner, T. F. (2004). A PELDOR-based nanometer distance ruler for oligonucleotides. J. Am. Chem. Soc.126, 5722–5729.10.1021/ja0393877Suche in Google Scholar

Skalka, A. and Goff, S. (1993). Reverse Transcriptase (Cold Spring Habor, USA: Cold Spring Habor Laboratory Press). Spudich, J. L. (1998). Variations on a molecular switch – transport and sensory signalling by archaeal rhodopsins. Mol. Microbiol.28, 1051–1058.Suche in Google Scholar

Spudich, J. L., Yang, C. S., Jung, K. H. and Spudich, E. N. (2000). Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol.16, 365–392.10.1146/annurev.cellbio.16.1.365Suche in Google Scholar

Steinhoff, H.-J. (2002). Methods for study of protein dynamics and protein-protein interaction in protein-ubiquitination by electron paramagnetic resonance spectroscopy. Frontiers Biosci.7, c97–110.10.2741/steinSuche in Google Scholar

Steinhoff, H.-J. and Suess, B. (2003). Molecular mechanism of gene regulation by site-directed spin labeling. Methods29, 188–195.10.1016/S1046-2023(02)00309-2Suche in Google Scholar

Steinhoff, H.-J., Dombrowsky, O., Karim, C. and Schneiderhahn, C. (1991). Two dimensional diffusion of small molecules on protein surfaces: an EPR study of the restricted translational diffusion of protein-bound spin labels. Eur. Biophys. J.20, 293–303.10.1007/BF00450565Suche in Google Scholar

Steinhoff, H. J., Mollaaghababa, R., Altenbach, C., Hideg, K., Krebs, M., Khorana, H. G. and Hubbell, W. L. (1994). Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science266, 105–107.10.1126/science.7939627Suche in Google Scholar

Steinhoff, H. J., Radzwill, N., Thevis, W., Lenz, V., Brandenburg, D., Antson, A., Dodson, G. and Wollmer, A. (1997). Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys. J.73, 3287–3298.10.1016/S0006-3495(97)78353-XSuche in Google Scholar

Steinhoff, H. J., Müller, M., Beier, C. and Pfeiffer, M. (2000a). Molecular dynamics simulation and EPR spectroscopy of nitroxide side chains in bacteriorhodopsin. J. Mol. Liquids84, 17–27.10.1016/S0167-7322(99)00107-5Suche in Google Scholar

Steinhoff, H.-J., Savitsky, A., Wegener, C., Pfeiffer, M., Plato, M. and Möbius, K. (2000b). High-field EPR studies of the structure and conformational changes of site-directed spin labeled bacteriorhodopsin. Biochim. Biophys. Acta1457, 253–262.10.1016/S0005-2728(00)00106-7Suche in Google Scholar

Thorgeirsson, T. E., Xiao, W. Z., Brown, L. S., Needleman, R., Lanyi, J. K. and Shin, Y. K. (1997). Transient channel-opening in bacteriorhodopsin – an EPR study. J. Mol. Biol.273, 951–957.10.1006/jmbi.1997.1362Suche in Google Scholar PubMed

Tiebel, B., Radzwill, N., Aung-Hilbrich, L. M., Helbl, V., Steinhoff, H. J. and Hillen, W. (1999). Domain motions accompanying Tet repressor induction defined by changes of interspin distances at selectively labeled sites. J. Mol. Biol.290, 229–240.10.1006/jmbi.1999.2875Suche in Google Scholar PubMed

Voss, J., Hubbell, W. L. and Kaback, H. R. (1995a). Distance determination in proteins using designed metal ion binding sites and site-directed spin labeling – application to the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA92, 12300–12303.10.1073/pnas.92.26.12300Suche in Google Scholar PubMed PubMed Central

Voss, J., Salwinski, L., Kaback, H. R. and Hubbell, W. L. (1995b). A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling – evaluation with T4 lysozyme. Proc. Natl. Acad. Sci. USA92, 12295–12299.10.1073/pnas.92.26.12295Suche in Google Scholar PubMed PubMed Central

Voss, J., Hubbell, W. L. and Kaback, H. R. (1998). Helix packing in the lactose permease determined by metal-nitroxide interaction. Biochemistry37, 211–216.10.1021/bi972152lSuche in Google Scholar PubMed

Wegener, A. A., Chizhov, I., Engelhard, M. and Steinhoff, H.-J. (2000a). Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. J. Mol. Biol.301, 881–891.10.1006/jmbi.2000.4008Suche in Google Scholar PubMed

Wegener, C., Tebbe, S., Steinhoff, H.-J. and Jung, H. R. (2000b). Spin labeling analysis of structure and dynamics of the Na+/proline transporter of Escherichia coli. Biochemistry39, 4831–4837.10.1021/bi992442xSuche in Google Scholar PubMed

Wegener, A. A., Klare, J. P., Engelhard, M. and Steinhoff, H.-J. (2001a). Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J.20, 5312–5319.10.1093/emboj/20.19.5312Suche in Google Scholar PubMed PubMed Central

Wegener, C., Savitsky, A., Pfeiffer, M., Möbius, K. and Steinhoff, H.-J. (2001b). High-field EPR-detected shifts of magnetic tensor components of spin label side chains reveal protein conformational changes: the proton entrance channel of bacteriorhodopsin. Appl. Magnet. Res.21, 441–452.10.1007/BF03162419Suche in Google Scholar

Xiao, W., Brown, L. S., Needleman, R., Lanyi, J. K. and Shin, Y.-K. (2000). Light-induced rotation of a transmembrane a-helix in bacteriorhodopsin. J. Mol. Biol.304, 715–721.10.1006/jmbi.2000.4255Suche in Google Scholar PubMed

Yan, B., Takahashi, T., Johnson, R. and Spudich, J. L. (1991). Identification of signaling states of a sensory receptor by modulation of lifetimes of stimulus-induced conformations: the case of sensory rhodopsin II. Biochemistry30, 10686–10692.10.1021/bi00108a012Suche in Google Scholar PubMed

Published Online: 2005-06-01
Published in Print: 2004-10-01

© Walter de Gruyter

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2004.119/html
Button zum nach oben scrollen