A list of complex numbers Λ is said to be realizable , if it is the spectrum of a nonnegative matrix. In this paper we provide a new sufficient condition for a given list Λ to be universally realizable (UR), that is, realizable for each possible Jordan canonical form allowed by Λ . Furthermore, the resulting matrix (that is explicity provided) is permutative, meaning that each of its rows is a permutation of the first row. In particular, we show that a real Suleĭmanova spectrum, that is, a list of real numbers having exactly one positive element, is UR by a permutative matrix.
Inhalt
-
Open AccessPermutative universal realizability29. Januar 2021
-
13. Februar 2021
-
21. Februar 2021
-
Open AccessSchrödinger’s tridiagonal matrix21. März 2021
-
Open AccessGraph isomorphism and Gaussian boson sampling6. April 2021
-
6. April 2021
-
8. April 2021
-
8. April 2021
-
27. April 2021
-
27. April 2021
- Combinatorial Matrices
-
Open AccessThe normalized distance Laplacian19. Januar 2021
-
19. Januar 2021
-
Open AccessOn identities involving generalized harmonic, hyperharmonic and special numbers with Riordan arrays19. Januar 2021
-
Open AccessFurther generalization of symmetric multiplicity theory to the geometric case over a field19. Januar 2021
-
19. Januar 2021
-
Open AccessUnique builders for classes of matrices29. Januar 2021
-
29. Januar 2021
-
1. März 2021
-
15. März 2021
-
Open AccessSeidel energy of complete multipartite graphs8. April 2021
-
8. April 2021
-
20. Juni 2021