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Abstract: A list of complex numbers Λ is said to be realizable, if it is the spectrum of a nonnegative matrix.
In this paper we provide a new su�cient condition for a given list Λ to be universally realizable (UR), that is,
realizable for each possible Jordan canonical form allowed by Λ. Furthermore, the resulting matrix (that is
explicity provided) is permutative,meaning that eachof its rows is a permutationof the�rst row. Inparticular,
we show that a real Sulĕımanova spectrum, that is, a list of real numbers having exactly one positive element,
is UR by a permutative matrix.
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alizability
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1 Introduction
The nonnegative inverse eigenvalue problem (NIEP) is the problem of characterizing all possible spectra of
entrywise nonnegative matrices. The NIEP remains unsolved. A solution is known only for n ≤ 4, which
shows the di�culty of the problem. For an elaborate exposition on the history of NIEP we refer the reader
to [7]. A list Λ = {λ1, λ2, . . . , λn} of complex numbers, is said to be realizable, if Λ is the spectrum of an
n × n nonnegative matrix A, and A is said to be a realizing matrix. From the Perron-Frobenius Theorem one
can easily conclude that if Λ = {λ1, λ2, . . . , λn} is the spectrum of an n × n nonnegative matrix A, then the
leading eigenvalue of A equals to the spectral radius of A, namely ρ(A) =: max

1≤i≤n
|λi| . This eigenvalue is called

the Perron eigenvalue, and we shall assume in this paper, that ρ(A) = λ1. If Λ contains only real numbers,
the problem is called the real nonnegative inverse eigenvalue problem (RNIEP), while if the realizing matrix is
required to be symmetric, then the problem is called the symmetric nonnegative inverse eigenvalue problem
(SNIEP) (see [19, 20] and the references therein).

A list Λ = {λ1, λ2, . . . , λn} of complex numbers, is said to be diagonalizably realizable (DR), if there is a
diagonalizable realizingmatrix for Λ [2]. Moreover, Λ is said to be universally realizable (UR), if it is realizable
for each possible Jordan canonical form (JCF) allowed by Λ. The problem of the universal realizability of
spectra, is called the universal realizability problem (URP). The URP contains the NIEP, and both problems
are equivalent if the given numbers λ1, λ2, . . . , λn are distinct. In terms of n, both problems remain unsolved
for n ≥ 5. It is clear that if Λ is UR, then Λ is DR. The �rst known results on the URP are due to Minc [13, 14].
Minc showed that if a list Λ = {λ1, λ2, . . . , λn} of complex numbers, is realizable by a positive diagonalizable
matrix, then Λ is UR. In [8], it was proved that if Λ is ODP realizable, that is, realizable by an o�-diagonally
positive matrix, then Λ is UR. This result contains, as a particular case, the result by Minc in [13].
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A matrix A = [aij], is said to have constant row sums, if each of its rows sums up to the same constant α.
The set of all matrices, with constant row sums equal to α, will be denoted by CSα. Then, any matrix in CSα

has the eigenvector eT = [1, 1, . . . , 1], corresponding to the eigenvalue α. The real matrices, with constant
row sums, are important because it is known that, the problemof �nding a nonnegativematrixwith spectrum
Λ = {λ1, . . . , λn}, is equivalent to the problem of �nding a nonnegativematrix in CSλ1 , with spectrum Λ (see
[6]).We shall denote by ek , the n-dimensional vector, with one in the k-th position and zeros elsewhere. Since
our interest is about nonnegative permutative matrices, we give the following de�nition:

De�nition 1.1. Let x ∈ Rn and let P2, P3, . . . , Pn be n × n permutation matrices. A permutative matrix is any
matrix of the form

P =


xT

(P2x)T
...

(Pnx)T

 .

Then, an n × n permutative matrix, is a matrix in which every row is a permutation of its �rst row. It is clear
that P ∈ CSS , where S is the sum of the entries of the vector x. Permutativematrices were introduced and �rst
studied in [5]. There, the authors give conditions under which, permutative matrices are rank de�cient, and
they pointed out that a Latin square is a permutative matrix whose transpose is also permutative, and that
these type of permutative matrices have been studied in statistical experimental design, and combinatorics.
The name permutative was introduced by Johnson [5].

The following results will be used throughout the paper. The �rst two, have been shown to be very useful,
not only to derive su�cient conditions for realizability in both problems, the NIEP and the URP, but for con-
structing a realizingmatrix, as well. The �rst result, by Brauer [1], shows how tomodify one single eigenvalue
of a matrix, via a rank-one perturbation, without changing any of its remaining eigenvalues. The second re-
sult, by Rado, and introduced by Perfect in [17], is an extension of Brauer’s result and it shows how to change
r eigenvalues of an n × n matrix (r < n), via a perturbation of rank r, without changing any of its remaining
n − r eigenvalues (see [8, 11, 17, 19], and the references therein, to see how Brauer and Rado results have been
applied to the NIEP and to the URP).

Theorem 1.1. (Brauer [1]). Let A be an n × n arbitrary matrix with eigenvalues λ1, λ2, . . . , λn . Let vT =
[v1, . . . , vn] be an eigenvector of A corresponding to the eigenvalue λk , and let q be any n-dimensional vec-
tor. Then the matrix A + vqT has eigenvalues λ1, . . . , λk−1, λk + vTq,λk+1, . . . , λn .

Theorem 1.2. (Rado [17]). Let A be an n × n matrix with eigenvalues λ1, λ2, . . . , λn . Let X =
[
x1 | · · · | xr

]
be

such that rank(X) = r and Axi = λixi , i = 1, . . . , r, r ≤ n. Let C be an r × n matrix. Then A + XC has eigenvalues
µ1, . . . , µr , λr+1, . . . , λn , where µ1, . . . , µr are eigenvalues of the matrix Ω + CX with Ω = diag{λ1, . . . , λr}.

The following result, in [20], is a symmetric version of Rado’s result.

Theorem 1.3. ([20]). Let A be an n×n real symmetric matrix with eigenvalues λ1, λ2, . . . , λn , and for some r ≤
n, let {x1, x2, . . . , xr} be an orthonormal set of eigenvectors of A spanning the invariant subspace associated
with λ1, λ2, . . . , λr . Let X be the n × r matrix with i-th column xi , let Ω = diag{λ1, . . . , λr}, and let C be any
r × r symmetric matrix. Then the symmetric matrix A + XCXT has eigenvalues µ1, . . . , µr , λr+1, . . . , λn , where
µ1, . . . , µr are eigenvalues of the matrix Ω + C.

Lemma 1.1. ([21]). LetqT = [q1, q2, . . . , qn] be an arbritary n-dimensional vector and A ∈ CSλ1 an n×n matrix

with JCF J(A). Let λ1 +
n∑
i=1

qi ≠ λi , i = 2, . . . , n. Then the matrix B = A + eqT has JCF J(A) + (
n∑
i=1

qi)E11, where
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E11 is the matrix with 1 in position (1, 1) and zeros elsewhere. In particular, if
n∑
i=1

qi = 0 then J(B) = J(A) and A

and B are similar.

Here, we study the permutative universal realizability problem, that is, the problem of determining the ex-
istence and construction of a nonnegative permutative matrix, with prescribed complex spectrum Λ =
{λ1, . . . , λn}, for each possible JCF allowed by Λ.

De�nition 1.2. (Spectra of Suleı̆manova type)
i) A list of real numbers Λ = {λ1, . . . , λn} is called a real Suleı̆manova spectrum, whenever

n∑
i=1

λi ≥ 0, (1)

and Λ contains only one positive eigenvalue.
ii) A list of complex numbers Λ = {λ1, . . . , λn} is called a complex Suleı̆manova spectrum, whenever it satis�es
(1), λ1 > 0 and

Reλk ≤ 0, |Reλk| ≥ |Imλk| , k = 2, . . . , n.

In [15], Paparella proved that the permutative RNIEP has a solution, when the given spectrum is of real
Sulĕımanova type [24]. Paparella [15], also showed that all realizable lists, with n ≤ 4, are in particular, per-
mutatively realizable. In [23], Soto extends results in [15] to more general lists, of real and complex numbers.
In particular, by applying Brauer’s Theorem, a very simple and short proof, that real Sulĕımanova spectra are
permutatively realizable, was also given in [23]. It was also showed in [23], that a complex Sulĕımanova spec-
trum is in particular permutatively realizable. Loewy [12] gave a negative answer to the following question set
by Paparella in [15]: can all realizable spectra of real numbers, be realized by a permutative matrix, or by a
direct sum of permutative matrices? In [16], Paparella gives a solution to the RNIEP for a particular class of
permutative matrices.

Outline of the paper: The paper is organized as follows: In Section 2, we recall the realizability prob-
lem for permutative matrices and we introduce some new su�cient conditions for the problem to have a
solution. In Section 3, we study the universal realizability problem with permutative structure. Su�cient
conditions for the existence and construction, of a permutative nonnegative matrix with a given spectrum
Λ = {λ1, λ2, . . . , λn}, for each possible JCF allowed by Λ, are given. In particular, we show that a real spec-
trum of Sulĕımanova type is permutatively universally realizable. Examples are also shown to illustrate the
results.

2 Permutative realizability
Since circulant matrices are permutative, the spectrum of a circulant matrix is also the spectrum of a per-
mutative matrix. Let λT = [λ1, λ2, . . . , λn] be the vector of eigenvalues of a circulant matrix C. Let c =
[c0, c1, . . . , cn−1] ∈ Cn . An n × n circulant matrix is of the form

C(c) =



c0 c1 c2 · · · cn−1
cn−1 c0 c1 · · · cn−2

cn−2 cn−1 c0 · · ·
...

...
. . . . . . . . . c1

c1 c2 · · · cn−1 c0


.
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Each row is a cycle shift of one position to the right of the row directly above. Then C(c) is fully speci�ed by
its �rst row, and the vector λT = [λ1, λ2, . . . , λn] above is said to be a conjugate-even vector, that is,

λ1 ∈ R, λj = λn−j+2, j = 2, 3, . . . ,
⌊
n + 1
2

⌋
. (2)

Thus, for this �rst approach to the permutative realizability of spectra, the problem will be to guarantee the
nonnegativity of C(c). In [19], Soto and Rojo, give a necessary and su�cient condition, for a 5-dimensional
conjugate-even spectrum to be realizable by a 5 × 5 symmetric circulant matrix C(c). For instance, the spec-
trum Λ = {6, 1, 1, −4, −4} can be arranged in the form of a conjugate-even vector λT= [6, 1, −4, −4, 1], and
then Λ is the spectrum of the nonnegative permutative (circulant) matrix

A =


0 3+

√
5

2
3−

√
5

2
3−

√
5

2
3+

√
5

2
3+

√
5

2 0 3+
√
5

2
3−

√
5

2
3−

√
5

2
3−

√
5

2
3+

√
5

2 0 3+
√
5

2
3−

√
5

2
3−

√
5

2
3−

√
5

2
3+

√
5

2 0 3+
√
5

2
3+

√
5

2
3−

√
5

2
3−

√
5

2
3+

√
5

2 0

 .

Moreover, a left circulantmatrix, denotedbyCL(c), is amatrix inwhich each row is a cycle shift of oneposition
to left of the rowdirectly above, and therefore it is aHankelmatrix, that is, a squarematrixwith constant skew-
diagonals. If c = [c0, . . . , cn−1] has nonnegative entries, then CL(c) is a real nonnegative symmetric matrix,
and its eigenvalues are the real numbers

λ1, λ2, λ3, . . . , λm+1, −λm+1, . . . , −λ3, −λ2, (3)

if n = 2m + 1, or they are

λ1, λ2, λ3, . . . , λm+1, λm+2, −λm+1, . . . , −λ3, −λ2, (4)

if n = 2m + 2. An immediate consequence is that, if µ1, µ2, . . . , µn are the eigenvalues of an n × n real left
circulant matrix, then they can be arranged as

µj = −µn−j+2, j = 2, 3, . . . ,
⌊
n + 1
2

⌋
.

If Λ = {λ1, λ2, . . . , λn} is a realizable list of real numbers, of the form (3) or (4), then Λ is permutatively real-
izable. In [3, 18], the authors prove certain perturbation results, for spectra realizable by circulant matrices.
In particular, from the results in [18], and for the spectrum {6, 1, 1, −4, −4}, Λt = {6+2t, 1 ± t, −4, −4, 1 ± t},
t > 0, is also permutatively realizable.

Remark 2.1. If Λ = {λ1, . . . , λn} is the spectrum of a circulant matrix, then λT = [λ1, . . . , λn] must be a
conjugate-even vector. Although circulant matrices are permutative, the conjugate-even condition is not nec-
essary for the spectrum of a permutative matrix. Thus both problems, circulant realizability and permutative
realizability are di�erent. A lot is known about circulant matrices, and it is relatively easy to construct this type
of matrices with a prescribed spectrum. Thus, the connection between circulant and permutative matrices is
important, in the sense that in the following results, it will often be necessary to initially have permutative real-
izations of smaller size than the �nal realizing matrix, and often they can be obtained as circulant realizations.

The next result extends to a complex spectrum, a similar result for a real spectrum Λ = {λ1, λ2, . . . , λn} given
in [23].

Theorem 2.1. Let Λ = {λ1, λ2, . . . , λn} be a spectrum of complex numbers. Suppose that:
i) There exists a partition Λ = Λ0 ∪ Λ1 ∪ · · · ∪ Λ1︸ ︷︷ ︸

r times

, where

Λ0 = {λ01, λ02, . . . , λ0r}, λ1 = λ01, Λ1 = {λ11, λ12, . . . , λ1p},



70 | Ricardo L. Soto et al.

such that Γ1 = {λ} ∪ Λ1, 0 ≤ λ ≤ λ1, is permutatively (circulantly) realizable.
ii) There exists an r × r permutative (circulant) nonnegative matrix with spectrum Λ0 and diagonal entries
λ, λ, . . . , λ (r times).
Then, Λ is permutatively realizable, with λ1 being the Perron eigenvalue of the realizing permutative matrix.

Proof. The proof is analogous to the proof in [23, Theorem 2.4].

Example 2.1. Consider the left half-plane spectrum

Λ = {7, −1, −1 + 2i, −1 − 2i, −1 + 2i, −1 − 2i}, with
Λ0 = {7, −1}, Λ1 = {−1 + 2i, −1 − 2i}, and
Γ1 = {3, −1 + 2i, −1 − 2i}.

We apply Theorem 2.1. Then Γ1 is the spectrum of the nonnegative permutative (circulant) matrix

A1 =


1
3

2
√
3

3 + 4
3

4
3 −

2
√
3

3
4
3 −

2
√
3

3
1
3

2
√
3

3 + 4
3

2
√
3

3 + 4
3

4
3 −

2
√
3

3
1
3

 .
In this case,

XT =
[ 1√

3
1√
3

1√
3 0 0 0

0 0 0 1√
3

1√
3

1√
3

]
, B =

[
3 4
4 3

]
.

Thus,

A = A1 ⊕ A1 + XCXT

=



1
3

4+2
√
3

3
4−2

√
3

3
4
3

4
3

4
3

4−2
√
3

3
1
3

4+2
√
3

3
4
3

4
3

4
3

4+2
√
3

3
4−2

√
3

3
1
3

4
3

4
3

4
3

4
3

4
3

4
3

1
3

4+2
√
3

3
4−2

√
3

3
4
3

4
3

4
3

4−2
√
3

3
1
3

4+2
√
3

3
4
3

4
3

4
3

4+2
√
3

3
4−2

√
3

3
1
3


is nonnegative permutative with spectrum Λ.

Now, we explore a di�erent approach, based on Theorem 1.3, with the initial matrix A not necessarily sym-
metric.

Theorem 2.2. Let Λ = {λ1, λ2, . . . , λn}, n even, be a realizable list of complex numbers, with λ1, λ2 being real
numbers. Suppose that Λ admits the associated partition

Λ = Λ1 ∪ Λ2,

where Λ1 is permutatively realizable, Λ1 = Λ2 = {µ, α2, . . . , α n
2
} with µ = λ1+λ2

2 , and αi ∈ {λ3, λ4, . . . , λn},
for i = 2, 3, . . . , n2 . Then, Λ is permutatively realizable.

Proof. Let A1 be the permutatively realizing matrix for Λ1. Then A1 ∈ CSµ, and the matrix

A =
[

A1 2
nβee

T

2
nβee

T A1

]
(5)

is permutative, with spectrum Λ, where β > 0, and
[
µ β

β µ

]
has eigenvalues λ1, λ2.



Permutative universal realizability | 71

Example 2.2. Λ = {10, −2, −2 + 3i, −2 − 3i, −2 + 3i, −2 − 3i} is a realizable list in the left half-plane. Then, we
take the associated spectrum Λ1 = {4, −2 + 3i, −2 − 3i}, with the permutative (circulant) realizing matrix

A1 =

 0 2 −
√
3
√
3 + 2√

3 + 2 0 2 −
√
3

2 −
√
3
√
3 + 2 0

 .
Next, we compute β = 6, and from (5),

A =



0 2 −
√
3
√
3 + 2 2 2 2√

3 + 2 0 2 −
√
3 2 2 2

2 −
√
3
√
3 + 2 0 2 2 2

2 2 2 0 2 −
√
3
√
3 + 2

2 2 2
√
3 + 2 0 2 −

√
3

2 2 2 2 −
√
3
√
3 + 2 0


is a permutative realization for Λ. Note that A is a diagonalizable ODP matrix, that is, a diagonalizable non-
negative matrix with positive o�-diagonal entries. Therefore, from [8], Λ is UR (although it is not necessarily
permutatively universally realizable).

The following lemma, will be useful to establish a su�cient condition, for real spectra to be permutatively
realizable.

Lemma 2.1. The matrix

M =



ω ω − λ2 ω − λ3 · · · ω − λn
ω − λ2 ω ω − λ3 · · · ω − λn

ω − λ3 ω − λ2
. . . · · · ω − λn

...
...

...
. . .

...
ω − λn ω − λ2 ω − λ3 · · · ω


has the spectrum λ1 = nω −

n∑
i=2

λi , λ2, . . . , λn .

Proof. It is clear that M ∈ CSλ1 , and det(M − λI) = 0, for λ = λi , i = 2, 3, . . . , n.

Then, the next proposition is immediate.

Proposition 2.3. Let Λ = {λ1, λ2, . . . , λn} be a spectrum of real numbers, with λ1 > λ2 ≥ · · · ≥ λn , and
1
n

n∑
i=1

λi ≥ λ2. Then, Λ is permutatively realizable.

Remark 2.2. Proposition 2.3 shows that a real Suleı̆manova spectrum, is in particular permutatively realizable.

Example 2.3. The Suleı̆manova spectrum

Λ = {45, −1, −2, −3, −4, −5, −6, −7, −8, −9}

is permutatively realizable, as ω = 0 ≥ −1. The nonnegative spectrum

Γ = {45, 9, 8, 7, 6, 5, 4, 3, 2, 1}

is also permutatively realizable, as ω = 9 ≥ 9.
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3 Permutative universal realizability
In this section, we consider the problem of permutative universal realizability. Recall that a list Λ =
{λ1, λ2, . . . , λn} of complex numbers is said to be universally realizable (UR), if it is realizable for each pos-
sible Jordan canonical form (JCF) allowed by Λ. There are spectra that are, in a natural way, permutatively
realizable, and furthermore, they can be universally realizable. This is the case of n-th roots of unity, which
as is well known, are the spectrum of the permutative matrix

A =



0 1 0 · · · 0

0 0 1
. . .

...
...

... 0
. . . 0

...
...

...
. . . 1

1 0 0 · · · 0


.

Since A + αI, α > 0, is also permutative, then Λ + α = {λ1 + α, λ2 + α, . . . , λn + α} is permutatively UR.
Moreover, A + eqT , with qT = [α, α, . . . , α] , is also a permutative matrix, and its spectrum is UR. There are
other spectra, such as the Sulĕımanova type spectra, that have shown to have a very good behavior, e.g.,
they are not only realizable, but also UR [21, 22]. Moreover they are symmetrically [4], persymmetrically [9],
and centrosymmetrically [10] realizable. Now, we show that a list Λ = {λ1, λ2, . . . , λn} of real numbers, with
λ1 > 0 > λ2 > λ3 ≥ λ4 ≥ · · · ≥ λn , is permutatively universally realizable.

Theorem 3.1. Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers, with

λ1 > 0 > λ2 > λ3 ≥ λ4 ≥ · · · ≥ λn .

Then the following statements are equivalent

i)
n∑
i=1

λi ≥ 0,

ii) Λ is permutatively realizable,
iii) Λ is permutatively UR.

Proof. The equivalence between i) and ii) has been proved in [23, Theorem 2.1]. It is clear that if Λ is per-
mutatively UR, then Λ is permutatively realizable. Thus, iii) implies ii). It remains to show that i) implies

iii). Let α =
n∑
i=1

λi ≥ 0 and let Λα = {λ1 − α, λ2, . . . , λn}. Then, given any JCF allowed by Λα, we construct

an initial matrix B ∈ CSλ1−α that is similar to this JCF. In order to understand the arguments and procedure
of the proof, suppose for instance, that B has eigenvalues λ3, λ4, λ5, with algebraic multiplicities 2, 2, 3,
respectively. That is,

B =



λ1 − α
λ1 − α − λ2 λ2
λ1 − α − λ3 λ3
λ1 − α − λ3 λ3
λ1 − α − λ4 λ4
λ1 − α − λ4 λ4
λ1 − α − λ5 λ5
λ1 − α − λ5 λ5
λ1 − α − λ5 λ5


∈ CSλ1−α .

Then for
qT = [α − λ1, −λ2, −λ3, −λ3, −λ4, −λ4, −λ5, −λ5, −λ5] +

α

9e
T ,



Permutative universal realizability | 73

B + eqT is nonnegative permutative, with diagonal JCF. To obtain a permutative realization A = B + eqT , with
a JCF

JA = diag{J1(λ1), J1(λ2), J2(λ3), J2(λ4), J3(λ5)},

where Jni (λi) represents the Jordan block of size ni associated to eigenvalue λi , we apply Brauer’s Theorem
as, 

λ1 − α
λ1 − α − λ2 λ2
λ1 − α − λ3 −a λ3 a
λ1 − α − λ3 λ3
λ1 − α − λ4 −b λ4 b
λ1 − α − λ4 λ4
λ1 − α − λ5 −c1 λ5 c1
λ1 − α − λ5 −c2 λ5 c2
λ1 − α − λ5 λ5


+ eqT + α9e

T , (6)

where
a = λ3 − λ2, b = λ4 − λ3, c1 = c2 = λ5 − λ4

are located in suitable positions (i, i+1), with the reciprocals in convenient positions to the left of (i, i). Then,
we obtain

B + eqT =



0 −λ2 −λ3 −λ3 −λ4 −λ4 −λ5 −λ5 −λ5
−λ2 0 −λ3 −λ3 −λ4 −λ4 −λ5 −λ5 −λ5
−λ3 −λ3 0 −λ2 −λ4 −λ4 −λ5 −λ5 −λ5
−λ3 −λ2 −λ3 0 −λ4 −λ4 −λ5 −λ5 −λ5
−λ4 −λ2 −λ3 −λ4 0 −λ3 −λ5 −λ5 −λ5
−λ4 −λ2 −λ3 −λ3 −λ4 0 −λ5 −λ5 −λ5
−λ5 −λ2 −λ3 −λ3 −λ5 −λ4 0 −λ4 −λ5
−λ5 −λ2 −λ3 −λ3 −λ5 −λ4 −λ5 0 −λ4
−λ5 −λ2 −λ3 −λ3 −λ4 −λ4 −λ5 −λ5 0


,

which is nonnegative permutative with the desired JCF. To obtain Jordan blocks of smaller size, wemake zero
the entries a, b, or c2, in (6), according what JCF we want to obtain. It is clear that this particular case can be
generalized to

B =



λ1 − α
λ1 − α − λ2 λ2

...
. . .

λ1 − α − λk −ak λk ak
λ1 − α − λk λk
λ1 − α − λk+1 −bk+1 λk+1 bk+1
λ1 − α − λk+1 λk+1

...
. . .

λ1 − α − λn λn


∈ CSλ1−α,

with B + eqT being nonnegative permutative with the desired JCF, where

qT = [α − λ1, −λ2, . . . , −λn] +
α

n e
T .

Note that

λ1 − α +
n∑
i=1

qi = −
n∑
i=2

λi + α > 0
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and so λ1 − α +
n∑
i=1

qi ≠ λi for i = 2, . . . , n. Therefore, by Lemma 1.1 B + eqT has JCF

J(B + eqT) = J(B) + αE11,

which is the desired JCF. Thus, the proof is complete.

The following example illustrates Theorem 3.1. It shows how we may obtain, a permutative realization, for
each possible JCF allowed by a given real list λ1 > 0 > λ2 > λ3 ≥ · · · ≥ λn .

Example 3.1. Let us consider the list

Λ = {30, −1, −5, −5, −5, −7, −7}.

We start with

B =



30 0 0 0 0 0 0
31 −1 0 0 0 0 0
35 4 −5 −4 0 0 0
35 4 0 −5 −4 0 0
35 0 0 0 −5 0 0
31 6 2 0 0 −7 −2
31 6 0 0 0 0 −7


.

Then, for qT =
[
−30 1 5 5 5 7 7

]
, we have that

B + eqT =



0 1 5 5 5 7 7
1 0 5 5 5 7 7
5 5 0 1 5 7 7
5 5 5 0 1 7 7
5 1 5 5 0 7 7
1 7 7 5 5 0 5
1 7 5 5 5 7 0


is permutative with JCF J(B + eqT) = diag{J1(30), J1(−1), J3(−5), J2(−7)}. For

B + eqT =



30 0 0 0 0 0 0
31 −1 0 0 0 0 0
35 4 −5 −4 0 0 0
35 0 0 −5 0 0 0
35 0 0 0 −5 0 0
31 6 2 0 0 −7 −2
31 6 0 0 0 0 −7


+ eqT ,

we obtain the JCF J(B + eqT) = diag{J1(30), J1(−1), J2(−5), J1(−5), J2(−7)}, and so on.

From Rado’s Theorem, we have the following result:

Theorem 3.2. Let Λ = {λ1, λ2, . . . , λn} be a realizable list of real numbers, where

λ1 > λ2 > · · · > λp > 0 > λp+1 ≥ λp+2 ≥ · · · ≥ λn ,

with −λn ≥ λ2, n ≥ 2p for n even, and n ≥ 2p + 1 for n odd n, p ≥ 2. Suppose that:
i) Λ admits a partition Λ = Λ0 ∪ Λ1 ∪ · · · ∪ Λ1︸ ︷︷ ︸

p times

, where

Λ0 = {λ1, λ2, . . . , λp}, Λ1 = {λ11, λ12, . . . , λ1r},
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λ1k ∈ {λp+1, λp+2, . . . , λn}, k = 1, 2, . . . , r,

such that Γ1 = {λ} ∪ Λ1, 0 ≤ λ ≤ λ1, is permutatively (circulantly) realizable.
ii) There exists a p × p permutative (circulant) nonnegative matrix with spectrum Λ0 and diagonal entries
λ, λ, . . . , λ (p times).
Then, Λ is permutatively universally realizable.

Proof. Let A1 be an (r + 1) × (r + 1) permutative realizing matrix for Γ1. Then,

A =


A1

A1
. . .

A1


is a p(r + 1) × p(r + 1) nonnegative permutative matrix with spectrum Γ1 ∪ · · · ∪ Γ1. From ii) let B be a p × p
permutative nonnegative matrix, with spectrum Λ0, and diagonal entries λ, λ, . . . , λ (p times). Let X be the
n × p matrix of eigenvectors xi of A. Since A1 ∈ CSλ, then columns of X are of the form

xT1 = [1, 0, . . . , 0], xT2 = [0, 1, . . . , 0], . . . , xTp = [0, . . . , 0, 1],

where 1 and 0 represent 1, 1, . . . , 1︸ ︷︷ ︸,
r+1 times

and 0, 0, . . . , 0︸ ︷︷ ︸,
r+1 times

respectively. Let C′ = B − Ω, where Ω =

diag{λ, λ, . . . , λ}.︸ ︷︷ ︸
p times

Then, fromRado’s Theorem, A+XC, where C is C′ with r zero columns interlaced between

each column of C′, is permutative with spectrum Λ and diagonal JCF. To obtain a possible nondiagonal JCF,
with a Jordan block Jk(λk) of size k ≥ 2, we set appropriate real numbers on the free positions (zero positions)
on the last row of the block Jk(λk), under the main diagonal, in such a way that the modi�ed matrix A′, from
A, preserves the spectrum Λ, A′ ∈ CSλ, and A′+XC is nonnegative permutative with the desired JCF. Observe
that from [19, Theorem 5] for S =

[
X | Y

]
nonsingular with S−1 =

[U
V
]
, we have

S−1(A′ + XC)S =
[
B CY + UA′Y
0 VA′Y

]
.

Moreover, from [22, Lemma2.2], if B and VA′Y have no common eigenvalues, then J(A′+XC) = J(B)⊕J(VA′Y).
This is the case with the eigenvalues of Λ0 and Λ1, which allow us to obtain the desired JCF. As we can do
this for each possible Jordan block, we may obtain all possible JCFs allowed by Λ. Thus, Λ is permutatively
universally realizable.

Example 3.2. Consider the spectrum

Λ = {4, 1, 1, −2, −2, −2}, with
Λ0 = {4, 1, 1}, Γ1 = {2, −2}.

Then,

B =

 2 1 1
1 2 1
1 1 2

 , and A′
1 =

[
0 2
2 0

]
,

are permutative, realizing Λ0 and Γ1, respectively. Then,

A1 = A′
1 ⊕ A′

1 ⊕ A′
1 + XC =



0 2 1 0 1 0
2 0 1 0 1 0
1 0 0 2 1 0
1 0 2 0 1 0
1 0 1 0 0 2
1 0 1 0 2 0


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is nonnegative permutative with diagonal JCF. Next, for

A′′ =



0 2 0 0 0 0
2 0 0 0 0 0
0 0 0 2 0 0
0 0 2 0 0 0
0 0 0 0 0 2
−1 1 0 0 2 0


,

we obtain A2 = A′′ + XC, nonnegative permutative, with JCF having one 2 × 2 Jordan block J2(−2). Next, for

A′′′ =



0 2 0 0 0 0
2 0 0 0 0 0
−1 1 0 2 0 0
0 0 2 0 0 0
0 0 −1 1 0 2
0 0 0 0 2 0


,

we obtain A3 = A′′′ + XC, nonnegative permutative, with JCF having a 3 × 3 Jordan block J3(−2). Thus, Λ =
{4, 1, 1, −2, −2, −2} is permutatively UR.

The following example shows that in many cases, if λ2 is non-simple in Theorem 3.1, it is still possible to
obtain universal realizability for Λ, but this is di�cult to predict.

Example 3.3. Consider the spectrum
Λ = {8, −1, −1, −3, −3}.

We start with

B =


8 0 0 0 0
9 −1 0 0 0
9 0 −1 0 0
11 0 0 −3 0
11 0 0 0 −3

 , qT =
[
−8 1 1 3 3

]
.

Then

A1 = B + eqT =


0 1 1 3 3
1 0 1 3 3
1 1 0 3 3
3 1 1 0 3
3 1 1 3 0


is permutative with diagonal JCF. Next,

A2 =


8 0 0 0 0
9 −1 0 0 0
9 0 −1 0 0
11 0 0 −3 0
11 0 2 −2 −3

 + eqT =


0 1 1 3 3
1 0 1 3 3
1 1 0 3 3
3 1 1 0 3
3 1 3 1 0


has JCF, with a 2 × 2 Jordan block J2(−3), corresponding to λ = −3, while other blocks are 1 × 1. Moreover,

A3 =


8 0 0 0 0
11 −3 0 0 0
11 0 −3 0 0
9 0 0 −1 0
9 0 −2 2 −1

 + erT =


0 3 3 1 1
3 0 3 1 1
3 3 0 1 1
1 3 3 0 1
1 3 1 3 0

 ,
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where rT =
[
−8 3 3 1 1

]
, has JCFwith a 2×2 Jordan block J2(−1),while other blocks are 1×1. Finally,

A4 =


8 0 0 0 0
11 −3 0 0 0
9 0 −1 0 0
11 −2 2 −3 0
9 −2 2 0 −1

 + esT =


0 3 1 3 1
3 0 1 3 1
1 3 0 3 1
3 1 3 0 1
1 1 3 3 0

 ,

where sT =
[
−8 3 1 3 1

]
, has JCF with the Jordan blocks J2(−3), J2(−1), J1(8).

Remark 3.1. In [23] was shown that a complex Suleı̆manova spectrum is realizable by a permutative nonnega-
tive matrix. It is an open question whether or not a complex Suleı̆manova spectrum is permutatively universally
realizable.
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