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Abstract: Symmetric matrix classes of bandwidth 2r + 1 was studied in 1972 through binomial coefficients. In
this paper, non-symmetric matrix classes with the binomial coefficients are considered where r + s + 1 is the
bandwidth, r is the lower bandwidth and s is the upper bandwidth. Main results for inverse, determinants
and norm-infinity of inverse are presented. The binomial coefficients are used for the derivation of results.
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1 Introduction

Toeplitz matrices are square matrices having constant entries along their diagonals. They occur in many
research fields. These kinds of matrices can either be finite or infinite. Applications are found in Variational
structure, Matrix theory, Theory of differential equations, Time series analysis, Signal and Image process-
ing, Markov Chains, Queueing theory, etc. In Numerical Analysis, Toeplitz matrices are applied in Finite
difference schemes, Finite element methods, Spline methods, Boundary value methods, Block unification
methods, Partial differential equation and many more. Symmetric matrices have been studied by several
researchers (see Refs. [2, 7, 16, 20, 25]).

Arikan and Kilic [1] defined the Toeplitz matrices as special types of square matrices in which the entries
on each descending diagonal from left to right are constant. Herein, a Toeplitz matrix A(r + s + 1, n) repre-
sents an nxn band matrix of bandwidth r + s + 1 where r is the lower bandwidth and s is the upper bandwidth.

In 1972, the authors [16], derived the formulae

det(A(2r+1,n)) = (_1)n+r—1 H
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Also, the authors gave the constructive approach for the inverse of the symmetric matrix A(2r + 1, n) as

{A(Z r+1, n)_l}iy}, _rl- l(),('f ;)2!(; ;)_ .1.)(!n b

r-1 r-1.. .
fr-1 o+ (+k+r-1)! (n+k) S
x;[(_l) ( k > (i0+k) G+k-r) (n+k+r)!}’ tzj, rz1.

(4)

Recently, Arikan and Kilic [1] studied the matrix

= (1) r+s
al] ( 1) <I’+i—j)’

where s is the upper bandwidth and r is the lower bandwidth. The following results were presented in Gaus-
sian g-binomial, generalized Fibonomial and binomial forms.

n-1 -1
detcn:inr(r_l)H{ r+s+m } { S+m }
r+m m ’
m=0 U

U

-1
- ket r—1)+ + (k=) (r— L((r=s)G-K)+k2+j) | T+S+]
hkjl _ (_1)r(]+k+r 1)+]l(k J)(r s+1)q2((r S)(j-k)+k* +j) |: ) J :|

q
-1 )
_1\d 3 (d*-d)-kd S r+s+k s+k j-d+r-1 r+d
le( %> {d—k} [s—d+k} { d ] [ r—1 r
ksdsj q q q . .
and
147 oo = (r+t+1)s+n-t)"
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where t = | 2% | and the falling factorial is defined as x* = x(x = 1) - - - (x - n + 1).

For more on Gaussian g-binomial, generalized Fibonomial and binomial forms (see Arikan and Kilic [1]). Re-
sults were presented for O < k, j < n — 1. Unfortunately, the constructive approach has not been studied since
1972. It is quite easy to run into trouble because one may not know if the above summand (5) (in its bino-
mial form) is singular in the interval of summation. Hence, the need to use assumptions or parametric option.

On the other hand, the modeling of inverses of non-symmetric matrices in terms of dimension has been dif-
ficult. The author, Murray Dow [8], studied the matrix

-3 1
3 -3 1
-1 3 -3 1
A(r+s+1,n) = -1 3 -3 1 ,
-1 3 -3 1
-1 3 -3

where r = 2, s =1 and gave its determinant as

n+1)(n+2)

detA(4,n) = 3

and its inverse is given as

a1 ) @i+ 1) for odd n,
v bo()i2 + b1(j)i + by(j) for evenn,
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m+1-j)(n+2-j)
2n+1)(n+2) °
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2n+1)(n+2)°

j(1 +j+4n+2n?)
2(n+1)(n+2)

ao(j) =

bo(j) =
b1(j) =

However, the infinity-norm of its inverse was not presented in that paper. This is the first time constructive
approach is used to model the properties of non-symmetric Teoplitz matrices.

In this paper, a set of band matrices of bandwidth (r + s + 1), where s is the upper bandwidth and r is the
lower bandwidth are considered. The coefficients are derived from the binomial expansion (x — 1) and are
placed about the diagonal in row and column fashion. The matrix of the type A(2r + 1, n) where 2r + 1 is the
bandwidth has been studied by Hoskins and Ponzo [16], where the matrix is symmetric, for example

6
4

4

1
4

A(5,n) =

Herein, results for the determinants, inverses and infinity-norm of Non-symmetric, Odd and Even banded
Toeplitz matrices arising from binomial coefficients are given. Also, constructive approach is used to derive
results for different kinds of matrix classes of the type

i 2s+t
_ (_1)\SH-1
AQRs+(t+1),n) =(-1) <s+j—i> as t — oo,
where s is the upper bandwidth of these matrices. Theorem 3 and Lemma 5 are similar to the results obtained
by Arikan and Kilic [1] but with a novel approach. The matrix classes here are the same as [1] but the used

method is different.

2 Main Results

For positive arbitrary integers r, s and t define the matrix a;; with upper bandwidth of s and lower bandwidth

of ras
i-i[ 2rFt i 2s+t
o= (— r+i-j — (- S+)-1
al] (1) <r+i—j> ( 1) <S+j—i>’ T,SZO,tE[0,00]. (6)
In the equation above, r and s can be arbitrarily chosen as positive integers. An example, which would be
treated in this paper, is setting r = s + 1. The inverse of the above matrix class is stated below.

Theorem 1.
The inverse of matrix A(r + s + 1, n) where r + s + 1 represents the bandwidth is given by

{A(r+s+1,n)—1}”:(_1)s <i+z—l> <j+rr— 1>

o () ()
Z (k+s—1) (k+r+s—1) '
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The elements derived are those on the main diagonal and below. Other elements are obtained by symmetry,
i.e., for values of k where j < k < n. Related results of this are given by the following Corollaries.

Corollary 1.
Let A[2 r = (t ¥ 1), n] be a non-symmetric matrix of this class and r be the lower bandwidth. If L,(i) = i(i + 1)(i +
2)---(i + r - 1), then, the elements on the diagonal and below are given by

n+1-dn+2-1)---(n+rxt-i

+

{A(2r¢ tT1), n)’l} -

ij r-D'Qrx(t+£1))
r-1 (8)
oy (r=1) L) Grv+rg (1) (n+V)! ..

Xg[( 1)< v )(i+v) G+v-n) m+v+rFxo)!|’ t2), rztxl.
Corollary 2.
Let A(2s = (t + 1), n) be a non-symmetric matrix of this class and s be the upper bandwidth. If Ls(j) = j( +
1)+ (j + s+ 1), then, the elements on the diagonal and above are given by

) _(m+1-pn+2-j)---(n+sxt-j)

{A@s==1,m }i,,- =% (s- DI2s= (T D)

s )

x , 1<j, s=tF1.

1 1) s—-1\ [Ls()] G+k+sz(tF 1) (n+k)!
k=0 k L*’k} G+k-s) (n+k+szt)

The Hoskins-Ponzo theorem (4) is easily derived whens =r, v=kandt=0.

2.1 The Bandwidth Case2s +2, s=>1and2r-1, r=2

For non-negative values of r and s, define the non-symmetric band matrices A = {al-]-} in terms of binomial

coefficients given by
iif 2r-1 i-if 2s+1
= (1)t — (_1)Sti-)
au ( 1) (r+j—i) ( 1) (S-l—i—j). (10)

For example, whens =2, r=3 and t = 1, the resulting matrix is

10 -5 1
-10 10 -5 1
5 -10 10 -5 1
-1 5 -10 10 -5 1
A(6,n) = -1 5 -10 10 -5 1

-1 5 -10 10 -5
-1 5 -10 10

The inverse of the matrix A7!, is given by the theorems below.
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Corollary 3.
Let A(r + s + 1, n) be a non-symmetric matrix of this class and r be the lower bandwidth. If L,(i) = i(i + 1)(i +
P) EEREEREES (i + r - 1), then, the elements on the diagonal and below are given by

{A(zr,n)—l} _(+1-Dn+2-0)(n+r-2-dn+r-1-i

ij r-D!Q2r-2)!
- (11)
kfr-1\ L) G+k+r-2)! (n+ k) NN
x%[(_l) ( k )(i+k) G+k-1! n+k+r-1)|’ i2), r22.
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- _ (n+1-9) . Lol iy .
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- 3 n+1-)(n+2-1i) . . . e s
{A(6,n)1}i’j—48(n+1)(n+2)(n+3)(n+4)[(1+1)(1+2)(}+1)](} 1)(-2)(n+4)(n+3)
2i(+2)§+2)+Dj-1D)(n+1)(n+4)
+i(i+1)(G+3)(+2)+1)j(n+2)(n+1)],
and (12)
“1 _ n+1-)(-i+n+2)(n+3-1)
{a@.n }i,j = 3200+ ) (n+2)(n+3)(n+ &) (n+5) (N +6)
A+ (E+2)((+3)(G+2)(G+1)jG-1)(-2)(G-3)
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Corollary 4.
Let A(r + s + 1, n) be a non-symmetric matrix of this class and s be the upper bandwidth. If Ls(i) = j(j + 1)(j +
p) EEEERRRRR (j + s — 1), then, the elements on the diagonal and above are given by
1 _m+1-j)n+2-j)---(n+s-j)ln+s+1-j)
{A (Zs+2,n)}i’j— (s-1)(2s)!
s (13)

X

S k(71 Ls() (i+k+s)  (n+k)!
=0 kK JG+k)(+k-s)(n+k+s+1)|’

The first three inverses for i < j are given by

4y m+1-n+2-j)E+1)i
{a@n }i,j B Y U )

{A(6’n)71} _(n+1_j)(n+2_j)(n+3_j)

i a3 4) [(j+1)(i+2)(i+1)i(i—1)(n+4)

—ji+3)(i+2)(i+ Di(n+1)] ,

. (el-pm+2-Pn+3-)n+b-j) (14)
{A(S’ n) }i,j T 1440(n+ D(n+2)(n+3)(n+ 4)(n +5)(n + 6)

G+ 1)G +2)3 + 3)( + 2)(i + 1)i(i - 1)(i - 2)(n + 5)(n + 6)
=2jG+2)[i+4)i+3)(i+2)i+1)i(i-1)(n+1)(n+6)
HE+DE+5)E+ ) +3)[i+2)([i + Di(n + 1)(n + 2)} .

The determinant of the general Toeplitz matrix classes in Eq. (6) is defined in the theorems below
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Theorem 2.
Forr,s,n=0,

-1
n
detA()’+S+1,n)=(—1)"+s_1H <k+s:r—1> (k+:—1> .

k=1
From the Lemma above, the determinants of the class of matrices (10) are given more elaborately. The first
few terms are

n+1)(n+2)

det A(4,n) = 1. 3
det A6, 1) = (ri + 1.)(n2+22)2.(n +33)2(.n +Z) ,
det A8, n) = (1n +.1)(r;2+ 2).2(n3+33)3.(n 2?)3(?1 +5532(n.+ 66)_

Attention is then drawn to the Norm-infinity of general Toeplitz matrices’ inverse arising from binomial coef-
ficients by the following Corollary.

Corollary 5.
Let r, s and t be non-negative constants then

_[Dealn+2k+ ¢ F DI+ 2m 5 (2t 1)]

-1
IARs £ (t 1), n) " || 2501 4 9)] , for odd n, )
_ [Tein+2kxQtF 2], n+2mF 21 foreven .

21+s(r + s)!
When t = 0 and r = s, Eqn. (3) is easily arrived at. The similar result is given below.
Corollary 6.
Norm-infinity of matrix class (10)’s inverses is stated as

r 2k+ D 2m -
1AQs + 2, 1) Yo = Hiea 1 2K DI (4 2m=3) o g
215(r + s)! (16)
_ [Tiey (0 + 200 [Ty ( + 2m - 2) , for even n.
2r+5(r + s)!

The first few terms for odd n are given as

JAG ) oo = 25 (143 (45) (- 1), nAL,

1y 1 3
|A(6, n) ||m—3840 m+3)(n+5)(n+7)(n-1)(n+1), n#1,
||A(8,n)’1||°°=645%(n+3)2(n+5)(n+7)(n+9)(n—1)(n+1), n#1.

Also, the first few terms for even n are given as

A4, 1) oo = % (n+2)(n+4),

A6, 1) |eo = 38140 (n+2*(n+4)(n+6)n,
1y 1 2 2
A8, ) |l = €45130 n+2)"(n+4)" (n+6)(n+8)n.

3 Proofs

In this section, Theorems 1, 2 and 3 are proved.
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Proof of Theorem 1.
Proof. For positive integers j = 1, consider

.(.)_i(i+1)(i+2)---(i+s—1).(j+1—i)(j+2—i)---(j+r—2—i)(j+r—1—1')
nt) = sl (r-1)!

_fi+s=1)\[j+r-1-i (17)
- s r—1 )

Also consider, for any integeri > 1

rp-(j)=j(j+1)(j+2)'“(j+r_1) 1) +2-j) - (i+s-2-j)i+s-1-))
! r! (s-1)

_(j+r-1 i+s-1-j (18)
- r s-1 )

Then, n;(i) is a polynomial of degree (r + s — 1) in the variable i, where ;(i) =0 fori = 0,-1,-2,--- ,-s +1
andi=j+1,j+2,---,j+r-1.Also, ;(j) is a polynomial of degree (r + s — 1) in the variable j, where ¥;(j) = 0

forj=0,-1,-2,---,-r+landj=i+1,i+2,---,i+s~- 1. Give the definition of an n-vector u; where each
component

ui(i)=n;(Q) for i<j+r

j nj f . ] (19)

=0 forizj+r.

Also, define the n—vector l; with components

LG) =y;(G) for j<i+s

i( '1[)1(] for j 20)

=0 for j=i+s.

Then u;(i) is the polynomial ;(i) [of degree (r + s — 1)] for i < j + r, so that v "*u;(i) =0 fori=1,2,--- ,j- 1.
Also, 1;(j) is the polynomial 1;(j) [of degree (r+s—1)] forj < i+s, sothat 6™°1;(j) =O0forj=1,2,--- ,i-1.1fU
denotes the upper triangular matrix whose jth column is u; as given in (19) and L denotes the lower triangular
matrix whose ith row is I;, then AU = L.If A(r + s + 1, n) = {a;;} where

= r+i-j r+s
al] (1) <r+i—j>,

i+s-1 j+r—-1-1 ..
ui,-=< s )(] r-1 > for i<j,
=0

for i>j,

and U = {u;;} where

then
AU =L. (21)

To continue the proof, the Theorem below is needed.

Theorem 4:
If the conditions of Theorem 1 are satisfied, then A™! = UD"1U7, if the inverse exist.

Proof. From (21), L = AU = (UT)™'D. Hence, A = (UT)"'DU'and A™! = UD™*U". Here, T denotes the use of
transposition. O
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Continuing the proof, we determine A(r + s + 1, n)"! by recalling from Theorem 4, that

A(r+s+1,n) ' =UuD'U".

Thus,
n
- Nik¥i;
Ar+s+1,n) 1L =) 229
{ }i,]' kz:; Dkk
where
_[i+s-1\[k+r-1-i
ik = s r-1 ’
_(j+r=1)\[k+s-1-j
Hence,
its—1 ] fr-1 n (k+r—1—i> (k+s—1—j)
{A(r+s+1,n)1}”=(—1)s< . )( ) ) e e e T
b k=i ( s )( r )
Remark:
When r = s, Eqn. (2) is easily derived. O

Proof of Theorem 2.
Proof. From AU = L, the following is obtained

n n L ik + 5)
Al=1|L|/ U =]|]! = U
Al = LI/ |U] Hkk/g“kk H{ Q) }

k=1 k=1
n —1)" k+s+r-1\ (-1
_ H {( ) ( k+rr_1 )(S—l) } (22)
k=1 ( r )
s n (k+s+r—1)
+5— r
- (_1) H k+r-1
k=1 ( r )
where Ikk = —ll)k(k +s) and Uk = ’y”slkk = l/)k(k) . O

Proof of Corollary 3.
Proof. Before proving Corollary 3, the following Theorem is needed.

Theorem 5.
The row-sums, denoted by S; of A7l is given by
j+r=1\ (n-j+s
- Cr )6,
S
Proof. By considering (e; UD'UTe), forj = 1, ..., n, given in Theorem 4, and, Theorem 3 in [16], the proof
similarly follows. O

l<js<n
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Corollary 7.
If L and U are the matrices of Theorem 1, then LT U = D a real diagonal matrix with

Dkk=(_1)s<k+§_1> <k+s:r—1) =(_1)s<k+i:;—1> <r;s>. 23)

Since D = LTU, recall from Theorem 1 that Dy = L. From (19), uy = ni(k) and Il = - (k + s). Thus,

k+s-1 k+s-1-1 k+s-1

lkk=l/)k(k+s)=(_1)<k+SJrrr—1) <k+s;}Ik_s>

=(_1)<k+5Jrrr—1) (s—_ll)_
Dkk=(—1)(k+§_1) <k+s:r—1> (s—_11>.

-1} s
(s—1>_( D
Dkk=(_1)s(k+s:r—1> <k+z—1>. (24)

Moreover, simple calculations proceeding from (24) imply that

s k+ts+r=1\(r+s
Dkk—(1)< s )(S)
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Then

Also, note that
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