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Abstract: Symmetric matrix classes of bandwidth 2r +1 was studied in 1972 through binomial coe�cients. In
this paper, non-symmetric matrix classes with the binomial coe�cients are considered where r + s + 1 is the
bandwidth, r is the lower bandwidth and s is the upper bandwidth. Main results for inverse, determinants
and norm-in�nity of inverse are presented. The binomial coe�cients are used for the derivation of results.
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1 Introduction
Toeplitz matrices are square matrices having constant entries along their diagonals. They occur in many
research �elds. These kinds of matrices can either be �nite or in�nite. Applications are found in Variational
structure, Matrix theory, Theory of di�erential equations, Time series analysis, Signal and Image process-
ing, Markov Chains, Queueing theory, etc. In Numerical Analysis, Toeplitz matrices are applied in Finite
di�erence schemes, Finite element methods, Spline methods, Boundary value methods, Block uni�cation
methods, Partial di�erential equation and many more. Symmetric matrices have been studied by several
researchers (see Refs. [2, 7, 16, 20, 25]).

Arikan and Kilic [1] de�ned the Toeplitz matrices as special types of square matrices in which the entries
on each descending diagonal from left to right are constant. Herein, a Toeplitz matrix A(r + s + 1, n) repre-
sents an n×n bandmatrix of bandwidth r+s+1where r is the lower bandwidth and s is the upper bandwidth.

In 1972, the authors [16], derived the formulae

det(A(2r + 1, n)) = (−1)n+r−1
n∏
k=1

(
k + 2r − 1

r

)(
k + r − 1

r

)−1
, (1)

{
A(r + s + 1, n)−1

}
i,j
= (−1)r

(
i + r − 1

r

)(
j + r − 1

r

) n∑
k=i

(k+r−1−i
r−1

)(k+r−1−j
r−1

)(k+r−1
r
)(k+2r−1

r
) (2)

and

‖A(2r + 1, n)−1‖∞ =


∏r

k=1(n+2k−1)
2

22r(2r)! for odd n,∏r
k=1(n+2k−2)

2

22r(2r)!
( n+2r

n
)
for even n.

(3)
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Also, the authors gave the constructive approach for the inverse of the symmetric matrix A(2r + 1, n) as{
A(2 r + 1, n)−1

}
i,j
= −(n + 1 − i)(n + 2 − i) · · · (n + r − i)(r − 1)!(2 r − 1)!

×
r−1∑
k=0

[
(−1)k

(
r − 1
k

)∏r−1
r=0(i + r)
(i + k)

(j + k + r − 1)!
(j + k − r)!

(n + k)!
(n + k + r)!

]
, i ≥ j, r ≥ 1.

(4)

Recently, Arikan and Kilic [1] studied the matrix

aij = (−1)r+i−j
(

r + s
r + i − j

)
,

where s is the upper bandwidth and r is the lower bandwidth. The following results were presented in Gaus-
sian q−binomial, generalized Fibonomial and binomial forms.

detCn = inr(r−1)
n−1∏
m=0

{
r + s + m
r + m

}
U

{
s + m
m

}−1
U

,

h−1kj = (−1)r(j+k+r−1)+j i(k−j)(r−s+1)q
1
2 ((r−s)(j−k)+k

2+j)
[
r + s + j

r

]−1
q

×
∑
k≤d≤j

(−1)dq
1
2 (d

2−d)−kd
[

s
d − k

]
q

[
r + s + k
s − d + k

]
q

[
s + k
d

]−1
q

[
j − d + r − 1

r − 1

]
q

[
r + d
r

]
q

(5)

and
‖A−1‖∞ = (r + t + 1)r(s + n − t)n

(r + s)! ,

where t = b nrr+s c and the falling factorial is de�ned as xn = x(x − 1) · · · (x − n + 1).

For more on Gaussian q−binomial, generalized Fibonomial and binomial forms (see Arikan and Kilic [1]). Re-
sults were presented for 0 ≤ k, j ≤ n − 1. Unfortunately, the constructive approach has not been studied since
1972. It is quite easy to run into trouble because one may not know if the above summand (5) (in its bino-
mial form) is singular in the interval of summation. Hence, the need to use assumptions or parametric option.

On the other hand, the modeling of inverses of non-symmetric matrices in terms of dimension has been dif-
�cult. The author, Murray Dow [8], studied the matrix

A(r + s + 1, n) =



−3 1
3 −3 1
−1 3 −3 1

−1 3 −3 1
· · · · · · · · ·
−1 3 −3 1

−1 3 −3


,

where r = 2, s = 1 and gave its determinant as

detA(4, n) = (n + 1)(n + 2)
2

and its inverse is given as

A−1ij =
{
a0(j)i(i + 1) for odd n,
b0(j)i2 + b1(j)i + b2(j) for even n,
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a0(j) =
(n + 1 − j)(n + 2 − j)
2(n + 1)(n + 2) ,

b0(j) =
j(−3 + j − 2n)
2(n + 1)(n + 2) ,

b1(j) =
j(1 + j + 4n + 2n2)
2(n + 1)(n + 2) .

However, the in�nity-norm of its inverse was not presented in that paper. This is the �rst time constructive
approach is used to model the properties of non-symmetric Teoplitz matrices.

In this paper, a set of band matrices of bandwidth (r + s + 1), where s is the upper bandwidth and r is the
lower bandwidth are considered. The coe�cients are derived from the binomial expansion (x − 1)r+s and are
placed about the diagonal in row and column fashion. The matrix of the type A(2r + 1, n) where 2r + 1 is the
bandwidth has been studied by Hoskins and Ponzo [16], where the matrix is symmetric, for example

A(5, n) =



6 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . . . . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 6


.

Herein, results for the determinants, inverses and in�nity-norm of Non-symmetric, Odd and Even banded
Toeplitz matrices arising from binomial coe�cients are given. Also, constructive approach is used to derive
results for di�erent kinds of matrix classes of the type

A(2s ± (t ± 1), n) = (−1)s+j−i
(

2s ± t
s + j − i

)
as t −→∞,

where s is the upper bandwidth of these matrices. Theorem 3 and Lemma 5 are similar to the results obtained
by Arikan and Kilic [1] but with a novel approach. The matrix classes here are the same as [1] but the used
method is di�erent.

2 Main Results
For positive arbitrary integers r, s and t de�ne thematrix aij with upper bandwidth of s and lower bandwidth
of r as

aij = (−1)r+i−j
(
2r ∓ t
r + i − j

)
= (−1)s+j−i

(
2s ± t
s + j − i

)
, r, s ≥ 0, t ∈ [0,∞]. (6)

In the equation above, r and s can be arbitrarily chosen as positive integers. An example, which would be
treated in this paper, is setting r = s + 1. The inverse of the above matrix class is stated below.

Theorem 1.
The inverse of matrix A(r + s + 1, n) where r + s + 1 represents the bandwidth is given by{

A(r + s + 1, n)−1
}
i,j
= (−1)s

(
i + s − 1

s

)(
j + r − 1

r

)

×
n∑
k=i

(k+r−1−i
r−1

)(k+s−1−j
s−1

)(k+s−1
s
)(k+r+s−1

r
) . (7)
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The elements derived are those on the main diagonal and below. Other elements are obtained by symmetry,
i.e., for values of k where j ≤ k ≤ n. Related results of this are given by the following Corollaries.

Corollary 1.
Let A[2 r∓ (t∓1), n] be a non-symmetric matrix of this class and r be the lower bandwidth. If Lr(i) = i(i +1)(i +
2) · · · (i + r − 1), then, the elements on the diagonal and below are given by{
A(2 r ∓ (t ∓ 1), n)−1

}
i,j
= ±(n + 1 − i)(n + 2 − i) · · · (n + r ∓ t − i)(r − 1)!(2 r ∓ (t ± 1))!

×
r−1∑
ν=0

[
(−1)ν

(
r − 1
ν

)
Lr(i)
(i + ν)

(j + ν + r ∓ (t ± 1))!
(j + ν − r)!

(n + ν)!
(n + ν + r ∓ t)!

]
, i ≥ j, r ≥ t ± 1.

(8)

Corollary 2.
Let A(2 s ± (t ± 1), n) be a non-symmetric matrix of this class and s be the upper bandwidth. If Ls(j) = j(j +
1) · · · (j + s + 1), then, the elements on the diagonal and above are given by{
A(2 s ± (t ± 1), n)−1

}
i,j
= ∓ (n + 1 − j)(n + 2 − j) · · · (n + s ± t − j)(s − 1)!(2 s ± (t ∓ 1))!

×
s−1∑
k=0

[
(−1)k

(
s − 1
k

)[
Ls(j)
j + k

]
(j + k + s ± (t ∓ 1))!

(j + k − s)!
(n + k)!

(n + k + s ± t)!

]
, i ≤ j, s ≥ t ∓ 1.

(9)

The Hoskins-Ponzo theorem (4) is easily derived when s = r, ν = k and t = 0.

2.1 The Bandwidth Case 2s + 2, s ≥ 1 and 2r − 1, r ≥ 2

For non-negative values of r and s, de�ne the non-symmetric band matrices A =
{
aij
}
in terms of binomial

coe�cients given by

aij = (−1)r+j−i
(
2r − 1
r + j − i

)
= (−1)s+i−j

(
2s + 1
s + i − j

)
. (10)

For example, when s = 2, r = 3 and t = 1, the resulting matrix is

A(6, n) =



10 −5 1
−10 10 −5 1
5 −10 10 −5 1
−1 5 −10 10 −5 1

−1 5 −10 10 −5 1
· · · · · · · · ·

−1 5 −10 10 −5 1
−1 5 −10 10 −5

−1 5 −10 10


.

The inverse of the matrix A−1, is given by the theorems below.
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Corollary 3.
Let A(r + s + 1, n) be a non-symmetric matrix of this class and r be the lower bandwidth. If Lr(i) = i(i + 1)(i +
2) · · · · · · · · · (i + r − 1), then, the elements on the diagonal and below are given by{

A(2 r, n)−1
}
i,j
= (n + 1 − i)(n + 2 − i) · · · (n + r − 2 − i)(n + r − 1 − i)

(r − 1)!(2 r − 2)!

×
r−1∑
k=0

[
(−1)k

(
r − 1
k

)
Lr(i)
(i + k)

(j + k + r − 2)!
(j + k − r)!

(n + k)!
(n + k + r − 1)!

]
, i ≥ j, r ≥ 2.

(11)

The �rst three inverses for i ≥ j are given by{
A(4, n)−1

}
i,j
= (n + 1 − i)
2(n + 1)(n + 2)

[
(i + 1) j (j − 1) (n + 2) − i (j + 1) j(n + 1)

]
,{

A(6, n)−1
}
i,j
= (n + 1 − i) (n + 2 − i)
48 (n + 1) (n + 2) (n + 3) (n + 4) [(

i + 1) (i + 2) (j + 1) j (j − 1) (j − 2) (n + 4) (n + 3)

−2 i (i + 2) (j + 2) (j + 1) j (j − 1) (n + 1) (n + 4)
+i (i + 1) (j + 3) (j + 2) (j + 1) j (n + 2) (n + 1)] ,

and{
A(8, n)−1

}
i,j
= (n + 1 − i) (−i + n + 2) (n + 3 − i)
4320(n + 1) (n + 2) (n + 3) (n + 4) (n + 5) (n + 6)
· [(i + 1) (i + 2) (i + 3) (j + 2) (j + 1) j (j − 1) (j − 2) (j − 3)
−3 i (i + 2) (i + 3) (j + 3) (j + 2) (j + 1) j (j − 1) (j − 2)

+3 i (i + 1) (i + 3) (j + 4) (j + 3) (j + 2) (j + 1) j (j − 1)
−i (i + 1) (i + 2) (j + 5) (j + 4) (j + 3) (j + 2) (j + 1) j] .

(12)

Corollary 4.
Let A(r + s + 1, n) be a non-symmetric matrix of this class and s be the upper bandwidth. If Ls(i) = j(j + 1)(j +
2) · · · · · · · · · (j + s − 1), then, the elements on the diagonal and above are given by{

A−1(2 s + 2, n)
}
i,j
= (n + 1 − j)(n + 2 − j) · · · (n + s − j)(n + s + 1 − j)

(s − 1)!(2 s)!

×
s−1∑
k=0

[
(−1)k

(
s − 1
k

)
Ls(j)
(j + k)

(i + k + s)!
(i + k − s)!

(n + k)!
(n + k + s + 1)!

]
, i ≤ j, s ≥ 1.

(13)

The �rst three inverses for i ≤ j are given by{
A(4, n)−1

}
i,j
= (n + 1 − j)(n + 2 − j)(i + 1)i

2 (n + 1)(n + 2) ,{
A(6, n)−1

}
i,j
= (n + 1 − j)(n + 2 − j)(n + 3 − j)
24(n + 1)(n + 2)(n + 3)(n + 4)

[
(j + 1)(i + 2)(i + 1)i(i − 1)(n + 4)

−j(i + 3)(i + 2)(i + 1)i(n + 1)
]
,{

A(8, n)−1
}
i,j
= (n + 1 − j)(n + 2 − j)(n + 3 − j)(n + 4 − j)
1440(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)
·
[
(j + 1)(j + 2)(i + 3)(i + 2)(i + 1)i(i − 1)(i − 2)(n + 5)(n + 6)
−2j(j + 2)(i + 4)(i + 3)(i + 2)(i + 1)i(i − 1)(n + 1)(n + 6)

+j(j + 1)(i + 5)(i + 4)(i + 3)(i + 2)(i + 1)i(n + 1)(n + 2)
]
.

(14)

The determinant of the general Toeplitz matrix classes in Eq. (6) is de�ned in the theorems below



326 | Omojola Micheal and Emrah Kilic

Theorem 2.
For r, s, n ≥ 0,

detA(r + s + 1, n) = (−1)n+s−1
n∏
k=1

(
k + s + r − 1

r

)(
k + r − 1

r

)−1
.

From the Lemma above, the determinants of the class of matrices (10) are given more elaborately. The �rst
few terms are

det A(4, n) = (n + 1)(n + 2)
1 · 2 ,

det A(6, n) = (n + 1)(n + 2)2(n + 3)2(n + 4)
1 · 22 · 32 · 4 ,

det A(8, n) = (n + 1)(n + 2)2(n + 3)3(n + 4)3(n + 5)2(n + 6)
1 · 22 · 33 · 43 · 52 · 6 .

Attention is then drawn to the Norm-in�nity of general Toeplitz matrices’ inverse arising from binomial coef-
�cients by the following Corollary.

Corollary 5.
Let r, s and t be non-negative constants then

‖A(2s ± (t ± 1), n)−1‖∞ =
∏r
k=1[n + 2k ± (2 t ∓ 1)]

∏s
m=1[n + 2m ∓ (2 t ± 1)]

2r+s(r + s)! , for odd n,

=
∏r
k=1[n + 2k ± (2 t ∓ 2)]

∏s
m=1[n + 2m ∓ 2 t]

2r+s(r + s)! , for even n.
(15)

When t = 0 and r = s, Eqn. (3) is easily arrived at. The similar result is given below.

Corollary 6.
Norm-in�nity of matrix class (10)’s inverses is stated as

‖A(2s + 2, n)−1‖∞ =
∏r
k=1(n + 2k + 1)

∏s
m=1(n + 2m − 3)

2r+s(r + s)! , for odd n,

=
∏r
k=1(n + 2k)

∏s
m=1(n + 2m − 2)

2r+s(r + s)! , for even n.
(16)

The �rst few terms for odd n are given as

‖A(4, n)−1‖∞ = 1
48 (n + 3) (n + 5) (n − 1) , n ≠ 1,

‖A(6, n)−1‖∞ = 1
3840 (n + 3) (n + 5) (n + 7) (n − 1) (n + 1) , n ≠ 1,

‖A(8, n)−1‖∞ = 1
645120 (n + 3)2 (n + 5) (n + 7) (n + 9) (n − 1) (n + 1) , n ≠ 1.

Also, the �rst few terms for even n are given as

‖A(4, n)−1‖∞ = 1
48 (n + 2) (n + 4) ,

‖A(6, n)−1‖∞ = 1
3840 (n + 2)2 (n + 4) (n + 6) n,

‖A(8, n)−1‖∞ = 1
645120 (n + 2)2 (n + 4)2 (n + 6) (n + 8) n.

3 Proofs
In this section, Theorems 1, 2 and 3 are proved.
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Proof of Theorem 1.
Proof. For positive integers j ≥ 1, consider

ηj(i) =
i(i + 1)(i + 2) · · · (i + s − 1)

s! · (j + 1 − i)(j + 2 − i) · · · (j + r − 2 − i)(j + r − 1 − i)(r − 1)!

=
(
i + s − 1

s

)(
j + r − 1 − i
r − 1

)
.

(17)

Also consider, for any integer i ≥ 1

ψi(j) =
j(j + 1)(j + 2) · · · (j + r − 1)

r! · (i + 1 − j)(i + 2 − j) · · · (i + s − 2 − j)(i + s − 1 − j)(s − 1)!

=
(
j + r − 1

r

)(
i + s − 1 − j
s − 1

)
.

(18)

Then, ηj(i) is a polynomial of degree (r + s − 1) in the variable i, where ηj(i) = 0 for i = 0, −1, −2, · · · , −s + 1
and i = j+1, j+2, · · · , j+ r−1. Also, ψi(j) is a polynomial of degree (r+ s−1) in the variable j, where ψi(j) = 0
for j = 0, −1, −2, · · · , −r + 1 and j = i + 1, i + 2, · · · , i + s − 1. Give the de�nition of an n−vector uj where each
component

uj(i) = ηj(i) for i < j + r
= 0 for i ≥ j + r.

(19)

Also, de�ne the n−vector li with components

li(j) = ψi(j) for j < i + s
= 0 for j ≥ i + s.

(20)

Then uj(i) is the polynomial ηj(i) [of degree (r + s − 1)] for i < j + r, so that γr+suj(i) = 0 for i = 1, 2, · · · , j − 1.
Also, li(j) is the polynomialψi(j) [of degree (r+s−1)] for j < i+s, so that δr+s li(j) = 0 for j = 1, 2, · · · , i−1. If U
denotes the upper triangularmatrix whose jth column is uj as given in (19) and L denotes the lower triangular
matrix whose ith row is li, then AU = L. If A(r + s + 1, n) =

{
aij
}
where

aij = (−1)r+i−j
(

r + s
r + i − j

)
,

and U =
{
uij
}
where

uij =
(
i + s − 1

s

)(
j + r − 1 − i
r − 1

)
for i ≤ j,

= 0 for i > j,

then
AU = L. (21)

To continue the proof, the Theorem below is needed.

Theorem 4:
If the conditions of Theorem 1 are satis�ed, then A−1 = UD−1UT , if the inverse exist.

Proof. From (21), L = AU = (UT)−1D. Hence, A = (UT)−1DU−1 and A−1 = UD−1UT . Here, T denotes the use of
transposition.
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Continuing the proof, we determine A(r + s + 1, n)−1 by recalling from Theorem 4, that

A(r + s + 1, n)−1 = UD−1UT .

Thus, {
A(r + s + 1, n)−1

}
i,j
=

n∑
k=1

ηikψkj
Dkk

,

where

ηik =
(
i + s − 1

s

)(
k + r − 1 − i

r − 1

)
,

ψkj =
(
j + r − 1

r

)(
k + s − 1 − j

s − 1

)
.

Hence, {
A(r + s + 1, n)−1

}
i,j
= (−1)s

(
i + s − 1

s

)(
j + r − 1

r

) n∑
k=i

(k+r−1−i
r−1

)(k+s−1−j
s−1

)(k+s−1
s
)(k+r+s−1

r
) .

Remark:
When r = s, Eqn. (2) is easily derived.

Proof of Theorem 2.
Proof. From AU = L, the following is obtained

|A| = |L| / |U| =
n∏
k=1

lkk/
n∏
k=1

ukk =
n∏
k=1

{
−ψk(k + s)
ψk(k)

}

=
n∏
k=1

{
(−1)n

(k+s+r−1
r
)( −1
s−1
)(k+r−1

r
) }

= (−1)n+s−1
n∏
k=1

(k+s+r−1
r
)(k+r−1

r
)

(22)

where lkk = −ψk(k + s) and ukk = γr+s lkk = ψk(k) .

Proof of Corollary 3.
Proof. Before proving Corollary 3, the following Theorem is needed.

Theorem 5.
The row-sums, denoted by Sj of A−1 is given by

Sj = (−1)s
(j+r−1

r
)(n−j+s

s
)(r+s

s
) , 1 ≤ j ≤ n

Proof. By considering (ejUD−1UTe), for j = 1, ..., n, given in Theorem 4, and, Theorem 3 in [16], the proof
similarly follows.
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Corollary 7.
If L and U are the matrices of Theorem 1, then LTU = D a real diagonal matrix with

Dkk = (−1)s
(
k + s − 1

s

)(
k + s + r − 1

r

)
= (−1)s

(
k + s + r − 1

r + s

)(
r + s
s

)
. (23)

Since D = LTU, recall from Theorem 1 that Dkk = lkkukk. From (19), ukk = ηk(k) and lkk = −ψk(k + s). Thus,

ukk = ηk(k) =
(
k + s − 1

r

)(
k + s − 1 − k

s − 1

)
=
(
k + s − 1

s

)
,

also

lkk = ψk(k + s) = (−1)
(
k + s + r − 1

r

)(
k + s − 1 − k − s

s − 1

)

= (−1)
(
k + s + r − 1

r

)(
−1
s − 1

)
.

Then

Dkk = (−1)
(
k + s − 1

s

)(
k + s + r − 1

r

)(
−1
s − 1

)
.

Also, note that (
−1
s − 1

)
= (−1)s−1.

Dkk = (−1)s
(
k + s + r − 1

r

)(
k + s − 1

s

)
. (24)

Moreover, simple calculations proceeding from (24) imply that

Dkk = (−1)s
(
k + s + r − 1

r + s

)(
r + s
s

)
.
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