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1 Introduction
Anm × n real matrix A is called totally positive (TP) if each of its minors (determinants of square submatrices)
is positive. To verify that a matrix A is TP, only the contiguous minors of A need to be checked; this is known
as Fekete’s Theorem [2]. Better yet, only the initial minors, contiguousminors in which the �rst row or column
is included, need to be checked. A useful reference about total positivity can be found in [2].

A partial matrix is a rectangular array in which some entries are speci�ed and the remaining, unspeci�ed
entries are free to be chosen (from an agreed upon set). A completion of a partial matrix is a choice of values
for the unspeci�ed entries, resulting in a conventional matrix. The TP completion problem asks which partial
matrices have a TP completion. Of course, an obvious necessary condition that a partial matrix have a TP
completion is that it be partial TP: all speci�ed minors (i.e. minors determined by speci�ed entries) must be
positive. In general, this necessary condition is not su�cient; completability depends on the pattern of the
speci�ed entries and their values. A pattern is simply an inventory of the positions of speci�ed entries. For
example, we denote the unspeci�ed entries in a pattern with “?” and the speci�ed entries with “∗”, as in∗ ? ∗

? ∗ ∗
∗ ∗ ?

 . (1)

It is known [4] that for each pattern, there is a �nite list of polynomial conditions in the speci�ed entries
that determine whether the data permit a TP completion. However, it is generally very di�cult to �nd an
e�cient list of conditions. Of course, such a list may be taken to include the requirement of partial total
positivity, and for somepatterns, these are the only conditions!We call these the TP-completable patterns. For
example, any 2-by-n pattern is TP-completable, but already in the 3-by-3 case, we can �nd several patterns
that are not TP-completable, such as (1).
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The 3-by-3 TP-completable patterns were characterized in [5]. In addition, there have been other partic-
ular results about TP-completable patterns [1, 5].

Our purpose here is to determine the 3-by-n TP-completable patterns. We do this by describing the ob-
structions, the non-TP-completable patterns, in particular the “minimal” ones. Fortunately, they are �nite in
number. For the general problem, it is an interesting open question whether the minimal obstructions are
�nite in number.

In the next section, we assemble several known technical facts and new observations that we will need,
after establishing convenient notation. In section 3, we list the minimal obstructions and prove they are not
TP-completable. We note that they are all minimal, as well. In section 4, we prove that this list of minimal
obstructions is complete, up to the symmetries we also identify.

2 Basic Results
We begin with some basic results regarding the completability of patterns.

We refer to the following result as the ratio theorem.

Theorem 1. A 2-by-n matrix A = aij with positive entries is TP if and only if a1i
a2i >

a1(i+1)
a2(i+1) for all 1 ≤ i ≤ n − 1

Proof. By Fekete’s Theorem [1], A is totally positive if and only if each contiguous minor of A is positive.
All 1 − by − 1 minors are positive by assumption. Each contiguous 2-by-2 minor of A is positive if and only if
a1ia2(i+1) > a2ia1(i+1) for all 1 ≤ i ≤ n−1. Rearranging, we �nd that A is totally positive if and only if a1i

a2i >
a1(i+1)
a2(i+1)

for all 1 ≤ i ≤ n − 1, as desired.

It immediately follows that each 2-by-n partial TP matrix is TP-completable, and therefore all 2 − by − n
patterns are TP-completable.

A3-by-n partial TPmatrixwith 1unspeci�ed entry is alwaysTP-completable [1]. Furthermore, byTheorem
3.1 of [3], we have:

Theorem 2. Let P be a 3-by-n pattern with all of its unspeci�ed entries in the same row or column. Then, P is
TP-completable.

The following theorem is from [2]:

Theorem 3. Let A be a m-by-n matrix, P1 be the m-by-m reverse identity matrix (i.e. matrix with 1’s on the
antidiagonal and 0’s everywhere else), and P2 be the n-by-n reverse identity matrix. Then, A is TP if and only if
P1AP2 is TP.

We refer to P1AP2 as the forwards-backwards symmetry of A. The theorem implies the set of TP matrices
is closed under forwards-backwards symmetry. We may also apply the forwards-backwards symmetry to
patterns. A pattern is TP-completable if and only if it is TP-completable after applying forwards-backwards
symmetry.

The following lemma from [1] (Lemma 2.4) allows us to border a partial TP matrix to get a larger matrix
while maintaining partial TP.

Lemma 1. Let A be an m-by-n partial TP matrix. Then there exist positive vectors x, u, v, w such that [A | x],

[u | A],
[
A
v

]
, and

[
w
A

]
are all partial TP.
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Of course, if we want to border with a column or row that is not fully speci�ed, we may just apply the above
lemma, and unspecify some entries.

There are in�nitely many 3-by-n non TP-completable patterns, but many of them are due to a smaller
subpattern that is not TP-completable.

Lemma 2. Let a pattern P be not TP-completable. Let P′ be a pattern that contains P as a contiguous subpat-
tern. Then P′ is also not TP-completable.

Proof. Let A be a partial TP matrix of pattern P that has no completion. By Lemma 1, we may border A and
remainpartial TP.Do sountilwe get a partial TPmatrixA′ with the samedimensions as P′. Now,unspecify any
entries that are unspeci�ed in P′. The result is a partial TP matrix of pattern P′. If this were TP-completable,
we would have a completion for A, a contradiction.

Also,

Lemma 3. Let a pattern P be not TP-completable. Let P′ be a pattern obtained from P by inserting a column
with 2 or fewer speci�ed entries. Then, P′ is also not TP-completable.

Proof. We prove the case of exactly 2 speci�ed entries; if there are less one may �rst insert a column with 2
speci�ed entries and then make one of the two unspeci�ed after the fact.

Let A be a partial TP matrix of pattern P that is not TP-completable. Insert a new column in A to get
a partial matrix A′ that is of pattern P′. We still need to specify the entries in the new column. Consider
the 2-by-n partial TP submatrix of A′ corresponding to the two rows the two speci�ed entries in the new
column are in. Complete this matrix to be TP, treating the 2 speci�ed entries as unspeci�ed ones. Then just
unspecify all the entries that are unspeci�ed in pattern P′. Because the only completed minors are in that
2-by-n submatrix, and we unspeci�ed some data in a TP matrix, A′ is partial TP. Hence, we have partial
TP data for A′, which if TP-completable, would yield a completion for the partial TP data in A. But such a
completion does not exist, so P′ is also not TP-completable.

Hence, it makes sense to only study the obstructions that are “minimal” in light of the previous two lem-
mas. Establishing what exactly minimal entails is key to a full classi�cation of the 3-by-n non-completable
patterns.

De�nition 1. A 3-by-n obstruction P is said to be minimal if P contains no contiguous proper subpattern that
is an obstruction, and no subpattern obtained from P by removing columns with 2 or fewer speci�ed entries is
an obstruction.

The following lemma allows for a more concise presentation of 3-by-n patterns.

Lemma 4. Let P be a 3-by-n pattern with column i having 0 or 1 speci�ed entries. Set P′ to be the pattern
obtained from P by removing column i. Then, P is TP-completable if and only if P′ is.

Proof. We consider the case in which column i has 1 speci�ed entry, the case of 0 speci�ed entries follows
similarly. First, suppose pattern P is TP-completable. Let A′ be a partial TP matrix of pattern P′, and insert
a column with 1 speci�ed entry after column i − 1 to get a partial matrix A of pattern P. Choose any positive
value for the speci�ed entry in column i of A. A is partial TP because no minors except the 1-by-1 minor cor-
responding to said entry were completed. Complete A using pattern P’s completability. Removing column i
provides a completion of A′.

Now, suppose pattern P′ is TP-completable. Let A be a partial TPmatrix of pattern P. Complete everything
but column i by using the completion for that data in P′. Now, we have a partial TP matrix with 2 unspeci�ed
entries in the same column, which is TP-completable by Theorem 2.
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This lemma shows that columns with 1 or fewer speci�ed entries are essentially irrelevant to completability
for 3-by-n patterns. Hence, fromnow on, unless otherwise speci�ed, we assume all patterns have no columns
with 1 or fewer speci�ed entries, since these cannot be minimal obstructions.

Moreover, this means there are only 4 possibilities for the columns of any 3-by-n pattern P, with three
possibilities if there are 2 speci�ed entries, and one possibility if the column is fully speci�ed. Hence, for con-
venience sake, we write 0 in place of a fully speci�ed column, 1 in place of a column in which the unspeci�ed
entry is in row 1, 2 if it is in row 2, and 3 if it is in row 3. In this way, we identify 3-by-n patterns to words over
the alphabet {0, 1, 2, 3}. As an example, the pattern∗ ∗ ∗ ∗ ?

∗ ? ∗ ∗ ∗
∗ ∗ ∗ ? ∗


can be concisely expressed as 02031. We may also write that a column is type 0, 1, 2, or 3, with the same
meaning as above. We will freely use this notation from now on.

The idea of forwards-backwards symmetry also translates nicely into this new language. Applying the
forwards-backwards symmetry to a pattern is equivalent to reversing the word and replacing each letter n
by −n mod 4. For instance, 02031 becomes 31020 after application of the forwards-backwards symmetry. We
will to this process as reverse complementing a word. A pattern is TP-completable if and only if its reverse
complement is.

3 The list of minimal obstructions
In Table 1 is the list of all 3-by-nminimal obstructions up to symmetry, shown with partial TP data that does
not admit a TP completion. The left table has the distinct reverse complement pairs of minimal obstructions;
data is presented for the �rst pattern listed. On the right, the four patterns are their own reverse complement.

Verifying that the patterns with the given data are not TP-completable is straightforward. The patterns
210, 213, 230, 231, 3100, and 3200 can be veri�ed to be non-completable by considering only a single unspeci-
�ed entry and theminors it completes. For 210, 213, 230, and 231, for the two 2-by-2minors that a21 completes
to be positive, a21 must both be greater than and less than one,which is impossible. For 3100 or 3200, the top-
left 2-by-2 minor forces a12 < 1 or a22 > 1, respectively, and the rightmost 3-by-3 minor forces the opposite
inequality, so they are impossible to complete.

The patterns 2112, 31021, 31031, 32021, and 31130 can be veri�ed to be non-completable by considering
two unspeci�ed entries. For 2112, 2-by-2 minors force both a21 > 1 and a24 < 1, but this makes the minor
consisting of rows 1 and 2 and columns 1 and 4 negative. For 31021, 31031, and 32021, 2-by-2 minors force
respectively a12 < 1 and 16

3 > a24 > 5, a12 < 1 and 15
2 < a34 < 8, and a22 > 1 and a24 > 5. In all cases,

this makes the 3-by-3 minor consisting of columns 2, 3, and 4 to be negative. Finally, for 31130, 2-by-2 minors
force a12 < 1 and 14

3 > a34 > 4, which makes the 3-by-3 minor consisting of columns 2, 4, and 5 negative.
Similarly, the pattern 311331 can be veri�ed to be non-completable by noting that 2-by-2minors force a12 < 1,
14
3 > a34 > 4, and6 < a35 < 7, and12 < 3a34 < 2a35 < 14. Thismakes the 3-by-3minor consisting of columns
2, 4, and 5 negative. Finally, for 0130, a 2-by-2minor forces a12 > 1/2. Then, the rightmost 3-by-3minor forces
−a33(3a12−1)+14a12−5 > 0, which given the restriction on a12 is equivalent to a33 < (14a12−5)/(3a12−1).
This makes the leftmost 3-by-3 minor less that −2(1 − 2a12)2/(3a12 − 1), which is negative since a12 > 1/2.

We note that deleting a column from any of the patterns on the above list results in a TP-completable
pattern. This clearly holds for the 3-by-3 patterns, as all 2-by-3 and 1-by-3 patterns are TP-completable and
hence no proper subpattern could be an obstruction. None of the remaining patterns contain any contiguous
subpatterns that are obstructions, and the removal of any type 1, 2, or 3 column results in a TP-completable
pattern.
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Table 1: List of 3-by-n minimal obstructions up to symmetry

Words Data

210, 032

1 ? 1
? 1 1
1 1 2


213, 132

1 ? 1
? 1 1
1 1 ?


230, 012

1 1 1
? 1 2
1 ? 2


231, 312

1 1 ?
? 1 1
1 ? 1


2112, 2332

1 ? ? 1
? 1 1 ?
1 1 2 2


3100, 0031

1 ? 1 1
1 1 2 3
? 1 3 5


3200, 0021

1 1 1 1
1 ? 2 3
? 1 3 5


31021, 32031

1 ? 1 1 ?
1 1 2 ? 5
? 1 3 8 8


31130, 01331

1 ? ? 1 1
1 1 1 2 3
? 1 2 ? 7


Word Data

0130

1 ? 1 1
1 1 2 3
1 2 ? 7


31031

1 ? 1 1 ?
1 1 2 5 5
? 1 3 ? 8


32021

1 1 1 1 ?
1 ? 2 ? 5
? 1 3 8 8


311331

1 ? ? 1 1 ?
1 1 1 2 3 3
? 1 2 ? ? 7



4 Proof the list is complete
It remains to show that there are no otherminimal obstructions.Weproceed by restricting the search space for
potentialminimal obstructions until the resulting list ismanually completable. First, we establish restrictions
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on the patterns that could be unlisted minimal obstructions. Then, we identify a subset of the remaining
possibilities as ’maximal’, and complete those patterns. Finally, we conclude that all remaining potential
minimal obstructions are completable.

4.1 Reductions

A pattern P that we need to check to see if it is a minimal obstruction or not is subject to the following con-
straints, proven later:

1. No two consecutive columns of P are both fully speci�ed, except possibly the �rst two or last two columns.
2. No three consecutive columns of P are identical.
3. The two columns before any fully speci�ed column cannot be identical. The same holds for the two

columns after any fully speci�ed column.
4. Between any two fully speci�ed columns, there are at least two distinct types of columns.
5. As a word, P does not begin with xx or x0, and P does not end with xx or 0x, where x ∈ {1, 2, 3}.

Moreover, all patterns that do not satisfy the above constraints can be reduced to a smaller pattern which
does satisfy the constraints. The exact way the reductions are made is given below, with the justi�cations.

Lemma 5 (Constraint 1). Let P be a 3-by-n pattern, such that columns i, i + 1 are fully speci�ed. Let P1 be the
subpattern consisting of columns 1 through i + 1 of P, and P2 be the subpattern consisting of columns i to n of
P. If P1 and P2 are TP-completable, so is P. Conversely, if one of P1 or P2 is an obstruction, so is P.

Proof. Let A be a partial TP matrix of pattern P, and complete the entries in columns 1 through i + 1 and
in columns i through n using the completability of P1 and P2 respectively. There is no problem because the
overlap between those sets of columns occurs only in the two fully speci�ed columns. Then, to show A is TP,
we only need to check its initial minors. But the initial minors all occur entirely in either columns 1 through
i + 1 or in i through n (because we only need to check up to 3 contiguous columns), and hence are positive.
So, A is TP. The converse holds immediately, as P contains a obstruction contiguously, and hence is itself an
obstruction.

Hence, if P is not TP-completable, then one of P1 and P2 is also an obstruction, so P is not minimal. The only
exception is if columns i and i + 1 are the �rst or last two columns, as then one of P1 or P2 is all of P, and the
other is just 2 fully speci�ed columns. This lemma doesn’t allow for any reductions in this case.

Lemma 6 (Constraint 2). Let P be a 3-by-n pattern, and let columns i, i + 1, i + 2 all be identical. Set P′ to be
the subpattern of P obtained by removing column i + 1. Then, P is TP-completable if and only if P′ is.

Proof. The cases where columns i, i+1, i+2 have 0 unspeci�ed entries is essentially covered by the previous
lemma. Hence, we only need to prove this lemma for the cases where columns i, i + 1, i + 2 are type 1, 2, or 3.
We will only do the case where they are type 3, the other cases follow in the same way.

Suppose pattern P is TP-completable. Let A′ be a partial TPmatrix of pattern P′, and A be a partial matrix
of pattern P obtained by inserting a column between columns i, i+1 in A′. We still need to specify the entries
in column i + 1 of A to match pattern P. Take any rational in the interval ( a1,i+2a2,i+2 ,

a1,i
a2,i ), and set its numerator

to be a1,i+1 and denominator to be a2,i+1. By the ratio theorem, we are guaranteed that the submatrix of A
corresponding to rows 1 and 2 is TP, and because those were the only newminors completed after the entries
in column i + 1, A is partial TP. Then, just complete A and we get a completion of A′.

Suppose pattern P′ is TP-completable. Let A be a partial TP matrix of pattern P, and complete everything
but column i + 1 using the completability of P′. A is still partial TP at this point. To see this, we only need to
verify the 2-by-n submatrix corresponding to rows 1 and 2 is TP. But for any j < i, because all but column i +1
were completed to be TP, we have a1,j

a2,j >
a1,i
a2,i , and for any k > i + 2, we have a1,i+2

a2,i+2 > a1,k
a2,k . Moreover, because the
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data was partial TP to begin with, we have a1,i
a2,i >

a1,i+1
a2,i+1 > a1,i+2

a2,i+2 . Transitivity and the ratio theorem shows that
the 2-by-n submatrix corresponding to rows 1 and 2 is indeed TP. Hence, A is now a partial TP 3-by-n matrix
with 1 unspeci�ed entry. These are all TP-completable, so A is TP-completable.

Hence, when we see three or more identical columns in a row, it can be replaced by just two copies of that
column, which is the second constraint. The following lemmas are simple variants on the one above.

Lemma 7 (Constraints 3 and 4). Let P be a 3-by-n pattern, such that there is a contiguous subpattern of the
form 0xx, xx0, or 0x0 for x = 1, 2, or 3 in columns i, i + 1, i + 2. Set P′ to be the subpattern of P obtained by
removing column i + 1. Then, P is TP-completable if and only if P′ is.

Proof. We consider the case x = 3, the other cases follow identically. First, suppose P is TP-completable. Take
any partial TP data for P′, and insert into the corresponding location in P to get a partial matrix A, except that
we need to choose the values in a1,i+1 and a2,i+1. We can choose these values so that A is partial TP, as in
Lemma 6. Then, we just complete A (as it is of pattern P) to obtain a completion for that data of pattern P′.

Now, suppose P′ is TP-completable. Let A be a partial TP matrix of pattern P. Complete all columns of
A except i + 1 by the completability of P′. We claim A is still partial TP. If so, we are done, as all 3-by-n
partial TP matrices with 1 unspeci�ed entry is TP-completable. We only need to verify the 2-by-n submatrix
corresponding to rows 1 and 2 is TP. But for any j < i, because A without column i +1 was completed to be TP,
we have a1,j

a2,j >
a1,i
a2,i , and for any k > i + 2, we have a1,i+2

a2,i+2 > a1,k
a2,k . Moreover, because the data was partial TP to

begin with, we have a1,i
a2,i >

a1,i+1
a2,i+1 > a1,i+2

a2,i+2 . Transitivity and the ratio theorem shows that the 2-by-n submatrix
corresponding to rows 1 and 2 is indeed TP.

This justi�es constraints 3 and 4. For constraint 4, note that patterns of the form ...0x...x0... (where between
the 0’s we have all x’s) may �rst be simpli�ed to ..0x0..., then to just ...00... using this lemma, where x ∈
{1, 2, 3}.

Lemma 8 (Constraint 5, Part 1). Let P be a 3-by-n pattern of the form x0... (or ...0x), and let P′ be the subpat-
tern of P obtained by removing the �rst (last) column. Then, P is TP-completable if and only if P′ is.

Proof. Let P be of the form x0.... The reverse case follows similarly. First, suppose P is TP-completable. Let
A be a partial TP matrix of pattern P′. By Lemma 1, we can extend A by a fully speci�ed column on the left
and remain partial TP. Then, just unspecify the entry that is supposed to be unspeci�ed. This is still partial
TP. Now A is a partial TP matrix of pattern P, which is TP-completable. So complete it to obtain a completion
for the original matrix A. Hence P′ is TP-completable.

Now, suppose P′ is TP-completable. We will take x = 3, but the other cases follow similarly. Let A be a
partial TP matrix of pattern P. Complete columns 2 through n to be TP as P′ is TP-completable. As before, it
su�ces to show A is still partial TP, as we can complete 3-by-n partial TP matrices with 1 unspeci�ed entry.
We know that for k > 2, a1,2

a2,2 > a1,k
a2,k , as columns 2 through n are TP. Also, a1,1

a1,2 > a1,2
a2,2 as the data was originally

partial TP. Hence, by the ratio theorem, the 2-by-n submatrix of A in rows 1 and 2 is TP. Because no fully
speci�ed 3 by 3 minors involve column 1, A is partial TP, as needed.

Lemma 9 (Constraint 5, Part 2). Let P be a 3-by-n pattern of the form xx... (...xx) for x = 1, 2 or 3. Let P′ be
the subpattern of P obtained by removing the �rst (last) column. Then, P is TP-completable if and only if P′ is.

Proof. Essentially identical to the proof for the previous lemma.

These lemmas can be thought of as “reductions,” where a pattern P can potentially be made smaller (“re-
duced”) without impacting whether or not it is TP-completable.

De�nition 2. Apattern P is said to be fully reduced if all �ve constraints are satis�ed. That is, none of the above
reductions can be made.
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Note that a minimal obstruction must be fully reduced. Suppose P is an obstruction that is not fully reduced.
If constraint 1 is not satis�ed, P contains another obstruction contiguously. If any of the other four constraints
are not satis�ed, P contains an obstruction after removal of a column with 2 speci�ed entries. Either way, P
is not minimal.

Hence, anyminimal obstructions thatmay have beenmissedwill occur among the fully reduced patterns
which avoid containing any of the known minimal obstructions contiguously, after the removal of (possibly
zero) columns with 2 speci�ed entries. Call this set of patterns S. We will have proved that our list of 3-by-n
minimal obstructions is complete if we show all patterns in S are TP-completable.

We say that a fully reduced pattern P ismaximal if the insertion of a type 1, 2, or 3 column anywhere into
P results in a pattern which may be reduced.

Now, we �nd all maximal patterns in S, broken down by how many fully speci�ed columns they have.

4.2 No fully speci�ed columns

For a pattern P with no fully speci�ed columns to be in S, it must not contain the known obstructions 213,
132, 231, 312, 2112, 2332, or 311331 as a subpattern.

If P begins with a 2, then because it needs to avoid 213 and 231, Pmust be a word over the alphabet {1, 2}
or {2, 3}. The only constraints left on P are the reductions, and avoiding 2112 or 2332. So, if we start with a 21,
we are free to append a 22, because it does not contribute to the creation of any 2112 patterns. From here, we
are forced to append a 1 because we can’t have 3 identical consecutive columns. Thus far, we have 21221. We
can’t append a 2 anymore, as wewould end upwith a 2112, so wemust append another 1, for 212211. However,
after appending the 1, there is nothing else we can append, so that we would be ending with a 11, which does
not satisfy constraint 5. Hence, we end at 21221. The case we start with a 23 is identical, yielding 23223.

If P begins with a 1, then we know that it cannot be followed by another 1. If the pattern begins with a
12, we know that by the previous analysis that the remaining word can only contain 1s and 2s or 2s and 3s. If
we only have 1s and 2s, this essentially reduces to the case where P began with a 21, except we are allowed to
turn the �rst 2 into a 22 because the 22 is no longer at the start of the word. Hence, the longest pattern here is
1221221. On the other hand, if we have 12 followed by a word over {2, 3}, we must take care to avoid 132. We
can append another 2, as it makes no new contribution to any 132 patterns. Afterwards, we must append a 3,
to get 1223. This is as long as we can go, for if we append another 2, we get a 132, and if we append another 3,
it cannot be followed by anything, which would result in a possible reduction due to the 33 at the end.

If the pattern begins with a 13, then P contains no type 2 columns, because it needs to avoid 132. So, we
have a word over the alphabet {1, 3}, beginning with 13, and we need to avoid 311331. Because we have a 3
already,weneed to avoid 11331 in the remainingword, after 13. So,we should append a 3. Then,wehave two 3s
in a rowalready, sowemust includea 1. Theword is now1331, andwemust avoid 1331 in any future appending.
Continuing as before, we eventually get to 13313311311, and we must avoid 31 in any further appending. With
two 1s in a row, we have to add a 3 to get 133133113113. We can’t append a 1, else we contain 311331. But if we
append a 3, then we wouldn’t be able to append anything after the 3, and hence the pattern would end in a
33, which is not allowed either. So, 133133113113 is the longest possible.

If P begins with a 3, the analysis proceeds in a similar fashion. If it is followed by a 2, we get 3223223 or
3221. If it is followed by a 1, we have a 31 and anything we append must avoid 1331. So, at best we can do
3133113113.

So, in total, the maximal patterns obtained from each case are 212211, 23223, 1221221, 1223, 133133113113,
3223223, 3221, and 3133113113. But some of these are contained in each other, and hence aren’t actually maxi-
mal. So the list reduces to 1223, 3221, 1221221, 3223223, and 133133113113. We are guaranteed we have all max-
imal patterns with no fully speci�ed columns because in each case of the �rst two columns, there ended
up only being one or two choices for each following column, and whenever there were two choices, one of
the choices ends up bringing the restrictions to the same spot as in the other choice, just after adding extra
columns.
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4.3 One fully speci�ed column

We consider 3-by-n patterns of the form  ∗
A ∗ B
∗


where A, B are patterns with no fully speci�ed columns. The knownminimal obstructions 31021, 31031, 32021
and 32031 are the only restrictions that involve both A and B. Hence, we consider the following cases: A
contains 31 or 32 (hence B does not contain 31 or 21), B contains 31 or 21 (hence A does not contain 31 or 32),
or A does not contain 31 or 32 and B does not contain 31 or 21. Within each case, A and Bmay be constructed
to be as long as possible independently of each other, and hence we can apply the same process as in the 0
fully speci�ed columns case to �nd all maximal patterns.

4.3.1 A contains 31 or 32

Beginning with the possibilities for A, we need to avoid 21, 23 and 3113 as subpatterns due to the obstructions
210, 230, 31130 (these patterns would be obtained after removal of columns with 2 speci�ed entries). We also
need to avoid 213, 132, 231, 312, 2112, 2332, or 311331 in subpatterns of A as before, because if they existed,
these patterns would appear contiguously after removal of columns with 2 speci�ed entries.

A cannot begin with a 2, because after the 2 cannot be a 1 or a 3 (210, 230), and hence no 31 or 32 patterns
will appear.

If A begins with a 1, A cannot start with 12, because of the same reason as before. So, A must begin with
a 13, and because of 132, the rest of A is a word over {1, 3}. A must avoid 3113 and 311331, but because 3113
is a subpattern of 311331, we only need to avoid 3113. Then, we just proceed as in the case with 0 speci�ed
columns, choosing the next letter as we go. 13 needs to avoid 113, so we put another 3, then we have to put a
1. Now we have 1331, and need to avoid 13 in the rest of the word. Then we get 1331331, and we need to avoid
3. We can’t have two identical columns followed by a fully speci�ed column, so that is the best we can do.
1331331 indeed has a 31, so this is valid.

If A begins with a 3, it can begin with either a 31 or a 32. If it begins with 32, the 2 cannot be followed by
anything else, so that ismaximal. Else, 3 is followed by a 1, andwe still need to avoid 3113. Thismeans the rest
of theword needs to avoid 13, so as in the analysis above, the longest we can go is 31331. Themaximal patterns
here are 32 and 31331. But 1331331 contains 31331, so the maximal possibilities for A are 32 and 1331331.

Now for B, it must avoid 31 and 21 because A contains 31 or 32. Other than that, we need to avoid 213, 132,
231, 312, 2112, 2332, or 311331 in subpatterns of B. We also need to avoid 32, 12, and 1331 from 032, 012, 01331,
the reverse complements of the patterns in A. Because B needs to avoid 32 and 31, it cannot begin with a 3.

If B begins with a 2, it must go 23. Then, the need to avoid 31 and 32, as well as the fact that a pattern
cannot end on two copies of the same column means that this is maximal.

If B beginswith a 1, it cannot be 12, so itmust be 13. Like in the 23 case, it ismaximal here. So, themaximal
possibilities of B are 23 or 13.

Now, we just pair all possibilities for A with all possibilities for B. This gives the patterns 32023, 32013,
1331331023, 1331331013.

4.3.2 B contains 31 or 21

If B contains a 31 or 21, A must avoid 31 or 32. Hence, A cannot begin with a 3. If A begins with a 2, the
obstructions 210 and 230 ensure that this is the longest possible pattern in this case. Finally, if A begins with
a 1, going 12 is as long as possible (because the two columns before a 0 can’t be identical). Else, A begins with
a 13. The 3 cannot be followed by a 2, as 132 is a known obstruction, and it can’t be followed by a 1, because
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A avoids 31. So, 13 is also as long as possible for A here. The possibilities are therefore 2, 12, or 13, and getting
rid of patterns that aren’t actually maximal leaves just 12 and 13 for A.

As for B, if it begins with a 2, it cannot go 23, as avoiding 231 means there would be no 31 or 21s in B. So,
B must begin with 21. We cannot append a 2 or a 3 because of 12 and 213. We can’t have 2 copies of a column
at the end of a pattern, which means 21 is maximal.

If B begins with a 3, it must be followed by a 1 because of 32. The pattern 312 that we must have a word
over {1, 3} after the 31. We need to avoid 1331 and 311331, but 1331 is a subpattern of 311331, so it su�ces to
avoid 1331. The process to obtain the longest possible word follows the previous reasoning, giving the �nal
maximal pattern 3113113.

If B begins with a 1, it must be followed by a 3 because of 12. The obstruction 132 means we can only
follow the 13 by more 1s and 3s. We still need to avoid 1331. As always, the process is the same, giving 13113.

The possible maximal patterns for B are 21, 3113113, 13113. Hence, the actual list is just 21 and 3113113.
Therefore, the list of maximal patterns in this case is 12021, 1203113113, 13021, 1303113113.

4.3.3 A avoids 31, 32, B avoids 31, 21

We already know the maximal patterns for A and B in this case. A can be 12 or 13, and B can be 23 or 13. So,
the possibly maximal patterns in this case are 12023, 12013, 13023, 13013.

So, the maximal patterns from each case are 32023, 32013, 1331331023, 1331331013, 12021, 1203113113,
13021, 1303113113, 12023, 12013, 13023, and 13013. Getting rid of ones that are contained in others, we get a
�nal list of 32023, 32013, 1331331023, 1331331013, 12021, 1203113113, 13021, 1303113113, and 12023.

4.4 Two fully speci�ed columns

Here, we consider patterns of the form  ∗ ∗
A ∗ B ∗ C
∗ ∗


where A, B, C are patterns with 0 fully speci�ed columns.

First, we consider what B can be. It cannot be one column long, as then the pattern would be reducible.
It must avoid 21, 23, and 13 due to the obstructions 210, 230, and 0130. It must also avoid 12 and 32 from the
reverse complements of 210 and 230. Hence, Bmust start with a 31, if it is not empty. But after the 1 cannot be
a 3 or a 2 because of 12 and 32. There can’t be two of the same column before a fully speci�ed column, so if B
is nonempty, it can only be 31. However, it is possible for a maximal pattern to exist with B empty, so long as
either A or C is also empty due to constraint 1. We are left with the following possible patterns:

P1 =

 ∗ ∗
A ∗ ∗
∗ ∗

 ,

P2 =

∗ ∗
∗ ∗ C
∗ ∗

 ,

P3 =

 ∗ ∗ ? ∗
A ∗ ∗ ∗ ∗ C
∗ ? ∗ ∗


For P1, A needs to avoid 31, 32, 21, and 23 from the obstructions 3100, 3200, 210, 230. So, A either begins with
a 12 or a 13. But both of these are maximal, as neither 2 or 3 can be followed by anything but another copy of
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themselves, and we know two identical columns before a fully speci�ed column can be reduced to just 1. So,
A is 12 or 13, and the maximal patterns are 1200, 1300.

For P2, C needs to avoid 31, 21, 32, and 12 from the obstructions 0031, 0021, 032, and 012. Hence, C can
beginwith either 13 or 23. Likewith the previous case, these aremaximal. Themaximal patterns here are 0013
and 0023.

Finally, for P3, because of the 31 in the middle, we need to account for the obstructions 31031, 32031, and
31021. ForA, this doesn’t change anything. It still needs to avoid 31, 32, 21, 23, andhence 12 and 13 aremaximal.
For C, nothing changes either. So, themaximal patterns are 12031013, 12031023, 13031013, and 13031023. Note
that these contain all of the maximal patterns in the P1 and P2 cases, so these are the only four that are
actually maximal.

4.5 3 or more fully speci�ed columns

We claim there are no new minimal obstructions in this case. Suppose we had a new minimal obstruction of
the form

P =

 ∗ ∗ ∗ ∗ ∗ ∗
A ∗ B1 ∗ B2 ∗ · · · ∗ Bk−1 ∗ Bk ∗ C
∗ ∗ ∗ ∗ ∗ ∗


where k ≥ 2 and A, B1, ..., Bk , C all have no fully speci�ed columns. Each Bi has at least two fully speci�ed
columns on one side of it, and at least one on the other side.

Suppose Bi has two fully speci�ed columns on the right, and one on the left. Then, it must avoid 31, 32,
13, 21, 23, and 12 from the obstructions 3100, 3200, 0130, 210, 230, and 012. Hence, it can only be at most one
column long. Now, suppose Bi has two fully speci�ed columns on the left, and one on the right. It must avoid
31, 21, 13, 23, 12, and 32 from the obstructions 0031, 210, 0130, 230, 012, and 032. So it too can be only at most
one column long.

Hence, all Bi are either 0 or 1 columns long. But if any Bi is 1 column long, P would not be fully reduced
by constraint 4, and if any Bi is empty, P would not be fully reduced by constraint 1, so P cannot be fully
reduced and thus is not in S.

4.6 The maximal patterns

The �nal list of maximal patterns is: 1223, 3221, 1221221, 3223223, 133133113113, 32023, 32013, 1331331023,
1331331013, 12021, 1203113113, 13021, 1303113113, 12023, 12031013, 12031023, 13031013, and 13031023. Note that
all patterns in S are contained in some maximal pattern here. Either a pattern is maximal, in which case it
is in the list, or it is not maximal, and hence can have columns inserted with two fully-speci�ed entries to
become a maximal pattern in the list. Finally, by the contrapositive to Lemma 3, this means that if we show
all of the maximal patterns here are TP-completable, all patterns in S are TP-completable, and hence the list
of minimal obstructions is complete.

4.7 The completions

Thanks to the forwards-backwards symmetry, we can reduce the list of patterns we need to complete down
to the following twelve patterns: 1223, 3221, 1221221, 133133113113, 12021, 13021, 1331331023, 1331331013, 12023,
12031013, 12031023, and 13031013.

Before discussing the completability of these patterns, we mention the following important lemma:
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Lemma 10. Let P be a 3-by-n pattern of the form

 ∗
A ∗ B
∗

, where A has no fully speci�ed columns (but

not necessarily B). Then, if P1 =

 ∗ ∗
A ∗ ∗
∗ ∗

 and P2 =

∗∗ B
∗

 are both TP-completable, so is P. Similarly, if

P1 =

 ∗
A ∗
∗

 and P2 =

∗ ∗
∗ ∗ B
∗ ∗

 are both TP-completable, and B has no fully speci�ed columns, then P is

TP-completable.

Proof. We prove the �rst case; the other one is symmetrical. In P, complete B according to the completion
of P2. Then, taking the �rst column of B as speci�ed, along with A and the fully speci�ed column, we have
a pattern of the form P1. This is partial TP because no 3 by 3 minors are fully speci�ed (as A has no fully
speci�ed columns). Now we can complete A, which completes P.

Finally, the completability of all 3-by-3 and 3-by-4 patterns with one and two unspeci�ed entries was char-
acterized in [1].

Theorem 4. All patterns in S are TP-completable.

Proof. By previous discussion, we need only to complete the maximal patterns of S up to symmetry, which
are 1223, 3221, 1221221, 133133113113, 12021, 13021, 1331331023, 1331331013, 12023, 12031013, 12031023, and
13031013. We use Lemma 10 and 3-by-3 and 3-by-4 results from [1] extensively.

– 1223: The (1,1) and (3,4) entries enter positively into all 2-by-2 minors, and hence can be chosen to be
large and maintain partial TP. Then, we need to complete a partial TP matrix of pattern 0220, which is
possible by Theorem 2.

– 3221 Note that the (1,4) and (3,1) entries enter negatively into all 2-by-2 minors that they are in. As all
of the speci�ed entries are positive, we may choose these two entries to be arbitrarily close to zero, so
that all 2-by-2 minors they complete are still positive. So, we complete the (1,4) and (3,1) entries in that
fashion. Because we only completed those two entries, no 3-by-3 minor was completed, and the matrix
is still partial TP. Now, we need to complete a partial TP matrix of pattern 0220 like above, which we can
do.

– 1221221: Complete the 1 in the middle to get 1220221. We are done if 1220221 is TP-completable. But this
is TP-completable if and only if 12021 is. 1200 and 021 are TP-completable, and therefore 12021 is TP-
completable.

– 133133113113: First, complete a column in the middle (using 2-by-n completability in rows 1 and 2) to
get 133033113113. Now, reducing this pattern, we �nd that 133033113113 is TP-completable if and only if
1303113113 is. This is TP-completable if 1300 and 03113113 both are. 1300 is known to be TP-completable.
Wewill prove 03113113 is TP-completable by proving its reverse complement, 13313310, is TP-completable.
Note that if we can complete the fourth columnwhile remaining partial TP, we will be done if 13303310 is
TP-completable. Reducing shows that 13303310 is TP-completable if and only if 130310 is TP-completable,
and this last pattern is TP-completable if 1300 and 0310 are TP-completable, both of which are known to
be TP-completable. Hence, we will be done if we can complete the fourth column of 13313310 and remain
partial TP. By scaling of rows and columns, without loss of generality we are trying to complete the fourth
column in the following partial matrix:? ∗ a ? b ∗ ? 1

1 1 1 1 1 1 1 1
∗ ? ? c ? ? ∗ 1


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Here, ? denotes unspeci�ed entries, while a, b, c and all the ∗ entries are speci�ed (as before, the ∗ is a
placeholder for a speci�ed entry). Because our data is partial TP, note that a > b > 1, while c < 1. Now, set
the (1, 4) entry to be any value in the range (b, a). This ensures, by the ratio theorem, that all completed
minors in the �rst two rows are positive. The only other completed minor is in rows 1 and 3, columns 4
and 8. But this is positive if the (1,4) entry is larger than c. Because b > 1 and c < 1, it is indeed positive.
Hence, we may complete the (1, 4) entry and remain partial TP, and we are done.

– 12021: This was done when we completed 1221221.
– 13021: If 1300 and 021 are TP-completable, 13021 is TP-completable, and both are TP-completable.
– 1331331023: If 13313310 and 0023 are TP-completable, 1331331023 is TP-completable. It is known 0023 is

TP-completable. For 13313310, we showed above it is TP-completable.
– 1331331013: This is TP-completable if 13313310 and 0013 are both TP-completable, and we showed

13313310 is TP-completable in the previously, and 0013 is known to be TP-completable.
– 12023: This is TP-completable if 1200 and 023 are both TP-completable, and both are.
– 12031013: This is TP-completable if 1200 and 031013 are both TP-completable. We know 1200 is TP-

completable, and showed 031013 is TP-completable above by showing its reverse complement 130310
is completable.

– 12031023: This is TP-completable if 1200 and 031023 are both TP-completable. 1200 is known to be TP-
completable. Once again, 031023 is TP-completable if 0310 and 0023 are both TP-completable, and both
are.

– 13031013: This is TP-completable if 1300 and 031013 are both TP-completable. We know 1300 is TP-
completable, and showed 031013 is TP-completable above by showing its reverse complement 130310
is completable.

Hence, all maximal patterns of S are TP-completable, and the proof is complete.

5 Closing Remarks
We have characterized all 3-by-n TP-completable patterns by �nding all minimal obstructions. However,
many of the results we used to prove that the list of minimal obstructions is complete do not generalize to
4-by-n patterns. The most notable challenges to solving the 4-by-n case are:

– The word notation does not generalize to 4-by-n patterns since it may be the case that a minimal ob-
struction has two unspeci�ed entries in the same column. This makes communication about patterns
and results much more di�cult.

– It is not the case that all 4-by-n patterns with one unspeci�ed entry are TP-completable. In particular,
4-by-4 patterns with one unspeci�ed entry on the antidiagonal are not TP-completable [1].

– Lemma 10’s generalization to 4-by-n is much weaker than the 3-by-n case, so proving patterns are TP-
completable is generally more di�cult.

– There are substantially more patterns to check for completability. In particular, up to symmetry there are
more than 300 4-by-4 patterns that could be minimal obstructions based on the natural extension of the
de�nition of “minimal” to 4-by-n patterns and generalizations to some of the reductions we used in the
3-by-n case.

Acknowledgement:Thisworkwas supportedby the 2018National ScienceFoundationGrantDMS#0751964.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were generated or
analyzed during the current study.



The Totally Positive Completion Problem: The 3-by-n Case | 239

References
[1] Shaun Fallat, Charles Johnson, andRonaldSmith. The general totally positivematrix completion problemwith fewunspeci�ed

entries. Electron. J. Linear Algebra, 7:1–20, (2000).
[2] Shaun M. Fallat and Charles R. Johnson. Totally Nonnegative Matrices. Princeton University Press, (2011).
[3] Charles Johnson and David Allen. Doubly constrained totally positive line insertion. Spec. Matrices, 8:181–185, (2020).
[4] Charles Johnson and António Leal-Duarte. On the solvability of derived matrix problems, including completions and duals.

Linear Algebra Appl., 514:165–173, (2017).
[5] Duo Wang. TP Matrices and TP Completability. Undergraduate Honors Theses, College of William and Mary, (2018).


	1 Introduction
	2 Basic Results
	3 The list of minimal obstructions
	4 Proof the list is complete
	4.1 Reductions
	4.2 No fully specified columns
	4.3 One fully specified column
	4.3.1  contains 31 or 32
	4.3.2  contains 31 or 21
	4.3.3  avoids 31, 32,  avoids 31, 21

	4.4 Two fully specified columns
	4.5 3 or more fully specified columns
	4.6 The maximal patterns
	4.7 The completions

	5 Closing Remarks

