Abstract
The following unified equation has been elaborated in the present paper, to describe the viscosity of all liquid metals as a function of temperature:
with ηi, Mi , Vi, Tm,i being the dynamic viscosity, atomic mass, molar volume and melting point of the given metal i, and T is temperature. The above equation was tested on 101 measured points of 15 selected liquid metals, and the average values of the generally valid parameters were found as: A = (1.80 ± 0.39) · 10–8 (J/Kmol1/3)1/2, B = 2.34 ± 0.20. Based on these parameters, the temperature dependence of viscosity was estimated for 32 liquid metals. The above equation was derived by (i) combining Andrade’s equation with the activation energy concept, and (ii) by combining Andrade’s equation with the free volume concept. It is shown, that the activation energy and the free volume concepts have identical roots and lead to identical results. The above equation is shown to be valid for liquid semi-metals (Si, Ge, Sb, Bi), if their actual melting points are replaced by their corrected melting points, corresponding to (unstable) metallic solid crystals. The ratio of viscosity to surface tension of pure liquid metals is discussed, as well.
References
[1] Y.S. Touloukian, S.C. Sexena, P.Hestermans: Thermophysical Properties of Matter, Vol.11, Viscosity, IFI/Plenum, New-York, 1975.10.1007/978-1-4757-1628-3Suche in Google Scholar
[2] L. Battezzati, A.L. Geer: Acta metall. 37 (1989) 1791.10.1016/0001-6160(89)90064-3Suche in Google Scholar
[3] T. Iida, R.I.L. Guthrie: The Physical Properties of Liquid Metals,Clarendon Press, Oxford, 1993.Suche in Google Scholar
[4] E.N. Andrade: Phil.Mag. 17 (1934) 497.10.1080/14786443409462409Suche in Google Scholar
[5] H.C. Longuet-Higgins, J.C. Pople: J. Chem. Phys. 25 (1956) 884.10.1063/1.1743136Suche in Google Scholar
[6] A.J. Batchinski: Z. Phys. Chem. 84 (1913) 643.10.1515/zpch-1913-8442Suche in Google Scholar
[7] J.H. Hildebrand: Viscosity and Diffusivity: A Predictive Treatment, Wiley, New-York, 1977.Suche in Google Scholar
[8] A.K. Doolittle: J. Appl. Phys. 22 (1951) 1471.10.1063/1.1699894Suche in Google Scholar
[9] M.H. Cohen, D. Turnbull: J. Chem. Phys. 31 (1959) 1164.10.1063/1.1730566Suche in Google Scholar
[10] E.N. Andrade: Phil. Mag. 17 (1934) 698.10.1080/14786443409462427Suche in Google Scholar
[11] H. Eyring: J. Chem. Phys. 4 (1936) 283.10.1063/1.1749836Suche in Google Scholar
[12] S. Seetharaman, D. Sichen: Metall. Mater. Trans. B 25 (1994) 589.10.1007/BF02650079Suche in Google Scholar
[13] S. Glasstone, K.J. Laidler, H. Eyring: The Theory of Rate Processes. The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, McGraw-Hill Book Co., New-York, 1941.Suche in Google Scholar
[14] B. Ilschner: Z. Metallkd. 57 (1966) 194.Suche in Google Scholar
[15] E.T. Turkdogan: Can. Met. Quart. 41 (2002) 151.10.1179/cmq.2002.41.2.151Suche in Google Scholar
[16] E.T. Turkdogan: Can. Met. Quart. 42 (2003) 433.10.1179/cmq.2003.42.4.433Suche in Google Scholar
[17] M. Born, H.S. Green: A General Kinetic Theory of Liquids, University Press, Cambridge, 1949.Suche in Google Scholar
[18] T.W. Chapman: AIChE J. 12 (1966) 395.10.1002/aic.690120233Suche in Google Scholar
[19] M. Shimoji: Adv. Phys. 16 (1967) 705.10.1080/00018736700101835Suche in Google Scholar
[20] I. Egry: Scripta Metall. et Mater. 26 (1992) 1349.10.1016/0956-716X(92)90647-WSuche in Google Scholar
[21] I. Egry: Scripta Metall. et Mater. 28 (1993) 1273.10.1016/0956-716X(93)90467-7Suche in Google Scholar
[22] N.H. March: J.Non-Crys. Sol. 250 – 252 (1999) 1.10.1016/S0022-3093(99)00336-1Suche in Google Scholar
[23] R.P. Chhabra, D.K. Sheth: Z. Metallkd. 81 (1990) 264.Suche in Google Scholar
[24] M. Hirai: ISIJ Intern. 33 (1993) 251.10.2355/isijinternational.33.251Suche in Google Scholar
[25] S. Morioka, B. Xiufang, S. Minhua: Z. Metallkd. 93 (2002) 288.10.3139/146.020288Suche in Google Scholar
[26] G. Kaptay, G. Csicsovszki, M.S. Yaghmaee: Mater. Sci. Forum 414–415 (2003) 235.10.4028/www.scientific.net/MSF.414-415.235Suche in Google Scholar
[27] G. Kaptay: Mater. Sci. Forum, 473–474 (2005) 1.10.4028/www.scientific.net/MSF.473-474.1Suche in Google Scholar
[28] E. Gebhardt, G. Wörwag: Z. Metallkd. 42 (1951) 358.Suche in Google Scholar
[29] T. Iida, Z.I. Morita, S. Takeuchi: J. Japan Inst. Metals 39 (1975) 1169.10.2320/jinstmet1952.39.11_1169Suche in Google Scholar
[30] E.N. Andrade, E.R. Dobbs: Proc. Roy. Soc. (London) A 211 (1952) 12.Suche in Google Scholar
[31] M.G. Frohberg, K. Özbagi: Z. Metallkd. 72 (1981) 630.Suche in Google Scholar
[32] H.M. Halilov: Zh. eksper. teoret. fiziki 8 (1938) 1249, 9 (1939) 335.Suche in Google Scholar
[33] S. Takeuchi, Z.I. Morita, T. Iida: J. Japan Inst. Metals, 35 (1971) 218.10.2320/jinstmet1952.35.3_218Suche in Google Scholar
[34] C.T. Ewing, J.A. Grand, R.R. Miller: J. Amer. Chem. Soc., 73 (1951) 1168.10.1021/ja01147a086Suche in Google Scholar
[35] I.I. Novikov, A.N. Soloviov: Atomnaia Energiia 1 (1956) 92.Suche in Google Scholar
[36] E. Gebhardt, M. Becker, S. Schäfer: Z. Metallkd. 43 (1952) 292.Suche in Google Scholar
[37] H. Walsdorfer, I. Arpshofen, B. Predel: Z. Metallkd. 79 (1988) 654Suche in Google Scholar
[38] E. Gebhardt, K. Köstlin: Z.Metallkd. 50 (1959) 379.Suche in Google Scholar
[39] S. Kimura, K. Terashima: J. Crystal Growth 180 (1997) 323.10.1016/S0022-0248(97)00263-7Suche in Google Scholar
[40] Y. Sato, T. Nishizuka, T. Tachikawa, M. Hoshi: High temperatures – High pressures 32 (2000) 253.10.1068/htwu265Suche in Google Scholar
[41] D.R. Poirier, G.H. Geiger: Transport Phenomena in Materials Processing, TMS, Warrendale, PA, 1994 (see pp. 16 – 20).Suche in Google Scholar
© 2005 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles BBasic
- Interdiffusion, Kirkendall effect, and Al self-diffusion in iron–aluminium alloys
- Permanent magnet alloys based on Sm2Co17; phase evolution in the quinary system Sm–Zr–Fe–Co–Cu
- A unified equation for the viscosity of pure liquid metals
- Calorimetric Study of Mg2Zn3
- Calorimetric investigations of the two ternary systems Al–Sn–Zn and Ag–Sn–Zn
- Articles AApplied
- Precipitation of the β-phase in Al–Mg alloys
- Mechanical properties of saffil fiber reinforced Zinc–Aluminium alloy (ZA 27) produced by pressure die casting
- Deformation and fracture mechanisms of Al2O3/Nb/Al2O3 composites under compression
- Kinetics and dynamics of hot deformation of OFHC copper in extended temperature and strain rate ranges
- Mechanism and kinetics of aging of high-strength Cu-5 wt.% Ni-2.5 wt.% Ti
- Microstructural evolution of Al–Ni–Y powders with different sizes
- Thermodynamic investigations of Bi–Cd, In–Pb, and Ni–Pd liquid alloys
- Instructions for authors
- Notifications/Mitteilungen
- Richtlinien für autoren
- Personal/ Personelles
- Press / Presse
- Conferences /Konferenzen
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles BBasic
- Interdiffusion, Kirkendall effect, and Al self-diffusion in iron–aluminium alloys
- Permanent magnet alloys based on Sm2Co17; phase evolution in the quinary system Sm–Zr–Fe–Co–Cu
- A unified equation for the viscosity of pure liquid metals
- Calorimetric Study of Mg2Zn3
- Calorimetric investigations of the two ternary systems Al–Sn–Zn and Ag–Sn–Zn
- Articles AApplied
- Precipitation of the β-phase in Al–Mg alloys
- Mechanical properties of saffil fiber reinforced Zinc–Aluminium alloy (ZA 27) produced by pressure die casting
- Deformation and fracture mechanisms of Al2O3/Nb/Al2O3 composites under compression
- Kinetics and dynamics of hot deformation of OFHC copper in extended temperature and strain rate ranges
- Mechanism and kinetics of aging of high-strength Cu-5 wt.% Ni-2.5 wt.% Ti
- Microstructural evolution of Al–Ni–Y powders with different sizes
- Thermodynamic investigations of Bi–Cd, In–Pb, and Ni–Pd liquid alloys
- Instructions for authors
- Notifications/Mitteilungen
- Richtlinien für autoren
- Personal/ Personelles
- Press / Presse
- Conferences /Konferenzen