Home Mechanical properties of saffil fiber reinforced Zinc–Aluminium alloy (ZA 27) produced by pressure die casting
Article
Licensed
Unlicensed Requires Authentication

Mechanical properties of saffil fiber reinforced Zinc–Aluminium alloy (ZA 27) produced by pressure die casting

  • S. Can Kurnaz EMAIL logo and Mehmet Durman
Published/Copyright: December 9, 2021
Become an author with De Gruyter Brill

Abstract

Conventional pressure die casting was used to produce ZA 27 alloy and zinc –aluminum composites with alumina short fibers (SaffilTM). While the Brinell hardness of the matrix alloy increased with increasing Saffil fiber content, on the other hand the tensile strength decreased. Creep tests were carried out on the 10%– 30% volume Saffil fiber reinforced ZA 27 matrix alloy and fiber-free ZA 27 alloy at 90 °C, 120 °C, 150 °C and stress values of 20 MPa, 40 MPa, 60 MPa. The results of ZA 27 alloys with Saffil fibers showed higher creep resistance than fiber free ZA 27 alloy. Among the MMCs, composite with fiber content 0.30 showed the highest creep resistance. The average stress exponent is 4 and 5.92 and average creep activation energy is 66.7 kJ/mol and 96.4 kJ/mol for ZA 27 and the MMCs, respectively.


Dr. S. Can Kurnaz Sakarya University Engineering Faculty Department of Metallurgical and Materials Engineering 54187 Esentepe Campus Sakarya-Turkey Tel.: +90 264 346 03 14–346 03 50 Fax: +90 264 346 03 14–346 03 51

References

[1] X.C. Liu, C. Bathias: J. Mater. Sci. 29 (1994) 4618.10.1007/BF00376286Search in Google Scholar

[2] A. Dlouhy, N. Merk, G. Eggeler: Acta metal. 41 (1993) 3245.10.1016/0956-7151(93)90054-VSearch in Google Scholar

[3] S. Muthukumarasamy, S. Seshan: Composites 26 (1995) 387.10.1016/S0010-4361(06)80138-2Search in Google Scholar

[4] G.L. Esperance, B.D. Hong, M. Gagne, R.J. Barnhurst: Mater.Sci. Eng. A 172 (1993) 1.10.1016/0921-5093(93)90420-JSearch in Google Scholar

[5] A. Türk, M. Durman, E.S. Kayali: Z. Metallkd. 89 (1998) 351.Search in Google Scholar

[6] M.A. Dellis, J.P. Keustermans, F. Delannay: Mater. Sci. Eng.A 135 (1991) 253.10.1016/0921-5093(91)90572-5Search in Google Scholar

[7] G. Kaustrater, B. Skrotzki, G. Eggeler: Mater. Sci. Eng. A 319 (2001) 716.10.1016/S0921-5093(01)01016-4Search in Google Scholar

[8] G. Eggeler: Z. Metallkd. 85 (1994) 39.Search in Google Scholar

[9] J. Phillips, M. Staubach, B. Skrotzki, G. Eggeler: Mater. Sci. Eng. A 234 (1997) 401.10.1016/S0921-5093(97)00199-8Search in Google Scholar

[10] H. Kaufmann, R. Auer-Knöbl, H.P. Degischer: Z. Metallkd. 85 (1994) 241.Search in Google Scholar

[11] S.H.J. Lo, S. Dionne, M. Sahoo, H.M. Hawthrone: J. Mater. Sci.27 (1992) 5681.10.1007/BF01119723Search in Google Scholar

[12] S.C. Kurnaz, M. Durman: Z. Metallkd. 93 (2002) 1252.10.3139/146.021252Search in Google Scholar

[13] A. Dlouhy, G. Eggeler: Pract. Metallogr. 30 (1993) 172.10.1515/pm-1993-300403Search in Google Scholar

[14] J. Dinwoodie, in Proc. Int. Congress and Exposition, Detroit, MI, Society of Automotive Engineers, 23–27 Februaury (1987), paper 870437.Search in Google Scholar

[15] A. Mortensen, J.A. Cornie: Metall Trans. A 21 (1987) 1160.10.1007/BF02668570Search in Google Scholar

[16] C.R. Cook, D.I. Yun, W.H. Hunt:Cast reinforced metal matrix composites, Ed. S.G. Fishman, A.K. Dhingra, ASM/TMS Commite, World Materials Congress, Chicago-Illinois, 24–30 Sept. (1988) p. 195.Search in Google Scholar

[17] R.B. Bhagat, M.F. Armeteau, J.M. Paulick, J.M. Chisholm, J.M. Parnell, D.G. Seidensticker: Cast reinforced metal matrix composites, Ed. S.G. Fishman, A.K. Dhingra, ASM/TMS Commite, World Materials Congress, Chicago-Illinois, 24–30 Sept. (1988) p. 195.Search in Google Scholar

Received: 2004-08-20
Accepted: 2004-10-20
Published Online: 2021-12-09

© 2005 Carl Hanser Verlag, München

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2005-0008/html
Scroll to top button