Abstract
Conventional pressure die casting was used to produce ZA 27 alloy and zinc –aluminum composites with alumina short fibers (SaffilTM). While the Brinell hardness of the matrix alloy increased with increasing Saffil fiber content, on the other hand the tensile strength decreased. Creep tests were carried out on the 10%– 30% volume Saffil fiber reinforced ZA 27 matrix alloy and fiber-free ZA 27 alloy at 90 °C, 120 °C, 150 °C and stress values of 20 MPa, 40 MPa, 60 MPa. The results of ZA 27 alloys with Saffil fibers showed higher creep resistance than fiber free ZA 27 alloy. Among the MMCs, composite with fiber content 0.30 showed the highest creep resistance. The average stress exponent is 4 and 5.92 and average creep activation energy is 66.7 kJ/mol and 96.4 kJ/mol for ZA 27 and the MMCs, respectively.
References
[1] X.C. Liu, C. Bathias: J. Mater. Sci. 29 (1994) 4618.10.1007/BF00376286Search in Google Scholar
[2] A. Dlouhy, N. Merk, G. Eggeler: Acta metal. 41 (1993) 3245.10.1016/0956-7151(93)90054-VSearch in Google Scholar
[3] S. Muthukumarasamy, S. Seshan: Composites 26 (1995) 387.10.1016/S0010-4361(06)80138-2Search in Google Scholar
[4] G.L. Esperance, B.D. Hong, M. Gagne, R.J. Barnhurst: Mater.Sci. Eng. A 172 (1993) 1.10.1016/0921-5093(93)90420-JSearch in Google Scholar
[5] A. Türk, M. Durman, E.S. Kayali: Z. Metallkd. 89 (1998) 351.Search in Google Scholar
[6] M.A. Dellis, J.P. Keustermans, F. Delannay: Mater. Sci. Eng.A 135 (1991) 253.10.1016/0921-5093(91)90572-5Search in Google Scholar
[7] G. Kaustrater, B. Skrotzki, G. Eggeler: Mater. Sci. Eng. A 319 (2001) 716.10.1016/S0921-5093(01)01016-4Search in Google Scholar
[8] G. Eggeler: Z. Metallkd. 85 (1994) 39.Search in Google Scholar
[9] J. Phillips, M. Staubach, B. Skrotzki, G. Eggeler: Mater. Sci. Eng. A 234 (1997) 401.10.1016/S0921-5093(97)00199-8Search in Google Scholar
[10] H. Kaufmann, R. Auer-Knöbl, H.P. Degischer: Z. Metallkd. 85 (1994) 241.Search in Google Scholar
[11] S.H.J. Lo, S. Dionne, M. Sahoo, H.M. Hawthrone: J. Mater. Sci.27 (1992) 5681.10.1007/BF01119723Search in Google Scholar
[12] S.C. Kurnaz, M. Durman: Z. Metallkd. 93 (2002) 1252.10.3139/146.021252Search in Google Scholar
[13] A. Dlouhy, G. Eggeler: Pract. Metallogr. 30 (1993) 172.10.1515/pm-1993-300403Search in Google Scholar
[14] J. Dinwoodie, in Proc. Int. Congress and Exposition, Detroit, MI, Society of Automotive Engineers, 23–27 Februaury (1987), paper 870437.Search in Google Scholar
[15] A. Mortensen, J.A. Cornie: Metall Trans. A 21 (1987) 1160.10.1007/BF02668570Search in Google Scholar
[16] C.R. Cook, D.I. Yun, W.H. Hunt:Cast reinforced metal matrix composites, Ed. S.G. Fishman, A.K. Dhingra, ASM/TMS Commite, World Materials Congress, Chicago-Illinois, 24–30 Sept. (1988) p. 195.Search in Google Scholar
[17] R.B. Bhagat, M.F. Armeteau, J.M. Paulick, J.M. Chisholm, J.M. Parnell, D.G. Seidensticker: Cast reinforced metal matrix composites, Ed. S.G. Fishman, A.K. Dhingra, ASM/TMS Commite, World Materials Congress, Chicago-Illinois, 24–30 Sept. (1988) p. 195.Search in Google Scholar
© 2005 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles BBasic
- Interdiffusion, Kirkendall effect, and Al self-diffusion in iron–aluminium alloys
- Permanent magnet alloys based on Sm2Co17; phase evolution in the quinary system Sm–Zr–Fe–Co–Cu
- A unified equation for the viscosity of pure liquid metals
- Calorimetric Study of Mg2Zn3
- Calorimetric investigations of the two ternary systems Al–Sn–Zn and Ag–Sn–Zn
- Articles AApplied
- Precipitation of the β-phase in Al–Mg alloys
- Mechanical properties of saffil fiber reinforced Zinc–Aluminium alloy (ZA 27) produced by pressure die casting
- Deformation and fracture mechanisms of Al2O3/Nb/Al2O3 composites under compression
- Kinetics and dynamics of hot deformation of OFHC copper in extended temperature and strain rate ranges
- Mechanism and kinetics of aging of high-strength Cu-5 wt.% Ni-2.5 wt.% Ti
- Microstructural evolution of Al–Ni–Y powders with different sizes
- Thermodynamic investigations of Bi–Cd, In–Pb, and Ni–Pd liquid alloys
- Instructions for authors
- Notifications/Mitteilungen
- Richtlinien für autoren
- Personal/ Personelles
- Press / Presse
- Conferences /Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles BBasic
- Interdiffusion, Kirkendall effect, and Al self-diffusion in iron–aluminium alloys
- Permanent magnet alloys based on Sm2Co17; phase evolution in the quinary system Sm–Zr–Fe–Co–Cu
- A unified equation for the viscosity of pure liquid metals
- Calorimetric Study of Mg2Zn3
- Calorimetric investigations of the two ternary systems Al–Sn–Zn and Ag–Sn–Zn
- Articles AApplied
- Precipitation of the β-phase in Al–Mg alloys
- Mechanical properties of saffil fiber reinforced Zinc–Aluminium alloy (ZA 27) produced by pressure die casting
- Deformation and fracture mechanisms of Al2O3/Nb/Al2O3 composites under compression
- Kinetics and dynamics of hot deformation of OFHC copper in extended temperature and strain rate ranges
- Mechanism and kinetics of aging of high-strength Cu-5 wt.% Ni-2.5 wt.% Ti
- Microstructural evolution of Al–Ni–Y powders with different sizes
- Thermodynamic investigations of Bi–Cd, In–Pb, and Ni–Pd liquid alloys
- Instructions for authors
- Notifications/Mitteilungen
- Richtlinien für autoren
- Personal/ Personelles
- Press / Presse
- Conferences /Konferenzen