Abstract
The hot-deformation behavior of oxygen-free high-conductivity (OFHC) copper has been studied in the temperature range 300–950 °C and strain rate range 0.001–100 s –1 using hot-compression tests. The dynamics of the behavior is studied with the help of processing maps, and the-rate controlling processes are evaluated using the standard kinetic rate equation. The processing maps exhibited two domains: (1) in the temperature range 600–900 °C and strain rate range 0.01–10 s–1, (2) in the range 750–950 °C and 30–100 s –1. From kinetic analysis of the flow stress data, apparent activation energy values of 159 kJ/mole and 75 kJ/mole have been estimated in the above two domains, respectively. These values suggest that dislocation core self-diffusion and grain boundary self-diffusion are the rate-controlling mechanisms. In both these domains, the average grain diameter varies linearly with the Zener–Hollomon parameter.
-
The work described in this paper was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project Ref No. CityU/1004/01E.
References
[1] Alder J.F., Philips V.A. : J. Inst. Metals 83 (1954 – 55) 80.Search in Google Scholar
[2] Horie M. Ueki, S., Nakamura T.: Mater. Sci. and Technol. 3 (1987) 329. 10.1179/mst.1987.3.5.329Search in Google Scholar
[3] Chen S.R., Kocks J.F.: Scripta metall. et mater. 27 (1992) 1587.10.1016/0956-716X(92)90149-9Search in Google Scholar
[4] Ravichandran N., Prasad Y.V.R.K.: Mater. Sci. Eng. A 159 (1992) 195.10.1016/0921-5093(92)90151-PSearch in Google Scholar
[5] Gao W., Belyakov A., Miura H., Sakai T.: Mater. Sci. Eng. A 265 (1999) 233. 10.1016/S0921-5093(99)00004-0Search in Google Scholar
[6] Prasad Y.V.R.K., Rao K.P.: Phil. Mag. 84 (2004) 3039.10.1080/14786430410001716205Search in Google Scholar
[7] Jonas J.J., Sellars C.M., McG W.J..Tegart: Metall. Rev. 14 (1969) 1. 10.1179/095066069790138056Search in Google Scholar
[8] Prasad Y.V.R.K., Gegel H.L., Doraivelu S.M., Malas J.C., Morgan J.T., Lark K.A., Barker D.R.: Metall. Trans. A 15 (1984) 1883. 10.1007/BF02664902Search in Google Scholar
[9] Prasad Y.V.R.K., Seshacharyulu T.: Inter. Mater. Rev. 43 (1998) 243. 10.1179/imr.1998.43.6.243Search in Google Scholar
[10] Prasad Y.V.R.K.: J. Mater. Eng. Perfor. 12 (2003) 638.10.1361/105994903322692420Search in Google Scholar
[11] Prasad Y.V.R.K., Sasidhara S. (Eds.): Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, Ohio (1997).Search in Google Scholar
[12] Luton M.J., Sellars C.M.: Acta Metall. 17 (1969) 1033.10.1016/0001-6160(69)90049-2Search in Google Scholar
[13] Sakai T., Jonas J.J.: Acta Metall. 32 (1984) 189.10.1016/0001-6160(84)90049-XSearch in Google Scholar
[14] Strogatz S.H.: Non-Linear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering, Addison-Wesley, Reading, Ma. (1994).Search in Google Scholar
[15] Prigogine I.: Science 201 (1978) 777.10.1126/science.201.4358.777Search in Google Scholar
[16] Hilborn R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, Oxford University Press, Oxford and New York(1994).Search in Google Scholar
[17] Neumann G., Tolle V.: Phil. Mag. A 54 (1986) 619. 10.1080/01418618608244022Search in Google Scholar
[18] Mishin Y., Hezig Chr., Bernardini J., Gust W.: Inter. Mater. Rev. 4 (1997) 155. 10.1179/imr.1997.42.4.155Search in Google Scholar
[19] Balluffi R. W.: phys. stat. sol. 42 (1970) 11.10.1002/pssb.19700420102Search in Google Scholar
[20] McQueen H.J.,Mater. Sci. Eng. A 101 (1988) 149. Search in Google Scholar
[21] Ostwaldt D., Klimanek P.: Mater. Sci. Eng. A 234–236 (1997) 810.10.1016/S0921-5093(97)00305-5Search in Google Scholar
© 2005 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles BBasic
- Interdiffusion, Kirkendall effect, and Al self-diffusion in iron–aluminium alloys
- Permanent magnet alloys based on Sm2Co17; phase evolution in the quinary system Sm–Zr–Fe–Co–Cu
- A unified equation for the viscosity of pure liquid metals
- Calorimetric Study of Mg2Zn3
- Calorimetric investigations of the two ternary systems Al–Sn–Zn and Ag–Sn–Zn
- Articles AApplied
- Precipitation of the β-phase in Al–Mg alloys
- Mechanical properties of saffil fiber reinforced Zinc–Aluminium alloy (ZA 27) produced by pressure die casting
- Deformation and fracture mechanisms of Al2O3/Nb/Al2O3 composites under compression
- Kinetics and dynamics of hot deformation of OFHC copper in extended temperature and strain rate ranges
- Mechanism and kinetics of aging of high-strength Cu-5 wt.% Ni-2.5 wt.% Ti
- Microstructural evolution of Al–Ni–Y powders with different sizes
- Thermodynamic investigations of Bi–Cd, In–Pb, and Ni–Pd liquid alloys
- Instructions for authors
- Notifications/Mitteilungen
- Richtlinien für autoren
- Personal/ Personelles
- Press / Presse
- Conferences /Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles BBasic
- Interdiffusion, Kirkendall effect, and Al self-diffusion in iron–aluminium alloys
- Permanent magnet alloys based on Sm2Co17; phase evolution in the quinary system Sm–Zr–Fe–Co–Cu
- A unified equation for the viscosity of pure liquid metals
- Calorimetric Study of Mg2Zn3
- Calorimetric investigations of the two ternary systems Al–Sn–Zn and Ag–Sn–Zn
- Articles AApplied
- Precipitation of the β-phase in Al–Mg alloys
- Mechanical properties of saffil fiber reinforced Zinc–Aluminium alloy (ZA 27) produced by pressure die casting
- Deformation and fracture mechanisms of Al2O3/Nb/Al2O3 composites under compression
- Kinetics and dynamics of hot deformation of OFHC copper in extended temperature and strain rate ranges
- Mechanism and kinetics of aging of high-strength Cu-5 wt.% Ni-2.5 wt.% Ti
- Microstructural evolution of Al–Ni–Y powders with different sizes
- Thermodynamic investigations of Bi–Cd, In–Pb, and Ni–Pd liquid alloys
- Instructions for authors
- Notifications/Mitteilungen
- Richtlinien für autoren
- Personal/ Personelles
- Press / Presse
- Conferences /Konferenzen