Startseite Correlations between the Hysteresis Parameters Determining the Rolling Resistance in Rubber Composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Correlations between the Hysteresis Parameters Determining the Rolling Resistance in Rubber Composites

  • T.-W. Xu , Z.-X. Jia , Y.-J. Chen , D.-M. Jia und Y.-Q. Wang
Veröffentlicht/Copyright: 24. Februar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Recently, the research on low rolling resistance tires attracted interest for its reduction of petrol consumption, which is related to the hysteresis loss of rubber composites. Here, four common methods representing the hysteresis loss of rubber composites in lab were contrasted to explore the potential connections between them. The results indicated that tan δ obtained by DMA showed good positive linearity with that obtained by RPA without distinguishing the rubber species and filler types, also for the positive relation between tan δ and hysteresis loop area (HLA). The rolling power loss (L) captured by the rolling resistance testing machine appeared to have a positive correlation with tan δ from DMA or RPA in NR composites, while a negative connection showed up in SBR composites. Further, considering the influence of strain on rolling energy loss, the 100% modulus was introduced leading to a good positive quadratic equation connection between tan δ/100% modulus and L in all common rubber composites.


* Mail address: Tiwen Xu, College of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PRC 525000, E-mail:

References

Beyer, R., Nackenhorst, U., “Homogenization of Thermomechanical Tread-Road Contact for the Investigation of Tire Rolling Resistance”, Pamm, 16, 513514 (2016) 10.1002/pamm.201610245Suche in Google Scholar

Chen, Y., “Rubber Rolling Resistance Tester, Model RSS-II”, Rubber Plastics Mach. Times, 12, 1415 (2007)Suche in Google Scholar

Gong, K., Wei, Y. and Ye, J., “Simulation Techniques of Tire Rolling Resistance Based on Thermal-Mechanical FEA”, China Mechanical Eng., 20, 626629 (2009)Suche in Google Scholar

Hoever, C., Kropp, W., “A Model for Investigating the Influence of Road Surface Texture and Tyre Tread Pattern on Rolling Resistance”, J. Sound Vib., 351, 161176 (2015) 10.1016/j.jsv.2015.04.009Suche in Google Scholar

Jia, Z., Xu, T., Yang, S., Luo, Y. and Jia, D., “Interfacial Mechano-Chemical Grafting in Styrene-Butadiene Rubber/Halloysite Nanotubes Composites”, Polym. Test., 54, 2939 (2016) 10.1016/j.polymertesting.2016.06.022Suche in Google Scholar

Klockmann, O., Albert, P., Hasse, A. and Korth, K., “A New Silane for Future Requirements – Lower Rolling Resistance, Lower Vocs”, Rubber World, 234, 3640 (2007)Suche in Google Scholar

Li, B., Zhao, Y., Zang, L., Wang, J. and Zhang, L., “Analytical Model of Tire Rolling Resistance Based on Elastic Hysteresis Theory”, Transactions Chin. Soc. Agric. Eng., 30, 5662 (2014) 10.3969/j.issn.1002-6819.2014.17.008Suche in Google Scholar

Li, H., Yan, J., Chen, H. and Li, W., “Study on Measurement of Rolling Resistance of Tire”, Tire Ind., 27, 180183 (2007)Suche in Google Scholar

Narasimhan, A., Ziegert, J. and Thompson, L., “Effects of Material Properties on Static Load-Deflection and Vibration of a Non-Pneumatic Tire during High-Speed Rolling”, SAE Int. J. Passenger Cars Mech. Syst., 4, 5972 (2011) 10.4271/2011-01-0101Suche in Google Scholar

Pinnington, R. J., “A Particle-Envelope Surface Model for Road–Tyre Interaction”, Int. J. Solids Struct., 49, 546555 (2012) 10.1016/j.ijsolstr.2011.10.022Suche in Google Scholar

Prasertsri, S., Rattanasom, N., “Fumed and Precipitated Silica Reinforced Natural Rubber Composites Prepared from Latex System: Mechanical and Dynamic Properties”, Polym. Test., 31, 593605 (2012) 10.1016/j.polymertesting.2012.03.003Suche in Google Scholar

Qiao, H., Chao, M., Hui, D., Liu, J., Zheng, J., Lei, W., Zhou, X., Wang, R. and ZhangL., “Enhanced Interfacial Interaction and Excellent Performance of Silica/Epoxy Group-Functionalized Styrene-Butadiene Rubber (SBR) Nanocomposites without Any Coupling Agent”, Composites Part B, 114, 356364 (2017) 10.1016/j.compositesb.2017.02.021Suche in Google Scholar

Rolere S. , LiengprayoonS., VaysseL., Sainte-Beuve, J. and BonfilsF., “Investigating Natural Rubber Composition with Fourier Transform Infrared (FT-IR) Spectroscopy: A Rapid and Non-Destructive Method to Determine Both Protein and Lipid Contents Simultaneously”, Polym. Test., 43, 8393 (2015) 10.1016/j.polymertesting.2015.02.011Suche in Google Scholar

Sandberg, U., “Rolling Resistance: Basic Information and State-Of-The-Art on Measurement Methods. Final Version”, Rolling Resistance, 1–102 (2011)Suche in Google Scholar

Schmidt, B., Dyre, J. C., “Emission Reduction by Exploitation of Rolling Resistance Modelling of Pavements”, Procedia Soc. Behavioral Sci., 48, 311320 (2012) 10.1016/j.sbspro.2012.06.1011Suche in Google Scholar

Veeramurthy, M., Ju, J., Thompson, L. L. and Summers, J. D., “Optimisation of Geometry and Material Properties of a Non-Pneumatic Tyre for Reducing Rolling Resistance”, Int. J. Veh. Des., 66, 193216 (2014) 10.1504/IJVD.2014.064567Suche in Google Scholar

Walter, J. D., “Energy Losses in Tires”, Tire Sci. Technol., 2, 235260 (1974) 10.2346/1.2167188Suche in Google Scholar

Wang, M. J., “Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates”, Rubber Chem. Technol., 71, 520589 (1998) 10.5254/1.3538492Suche in Google Scholar

Xu, T., Jia, Z., Luo, Y., Jia, D. and Peng, Z., “Interfacial Interaction between the Epoxidized Natural Rubber and Silica in Natural Rubber/Silica Composites”, Appl. Surf. Sci., 328, 306313 (2015) 10.1016/j.apsusc.2014.12.029Suche in Google Scholar

Xu, T., Jia, Z., Wu, L., Chen, Y., Luo, Y., Jia, D. and Peng, Z., “Influence of Acetone Extract from Natural Rubber on the Structure and Interface Interaction in NR/Silica Composites”, Appl. Surf. Sci., 423, 4352 (2017) 10.1016/j.apsusc.2017.06.150Suche in Google Scholar

Xu, T., Jia, Z., Wu, L., Chen, Y., Luo, Y., Jia, D. and Peng, Z., “Effect of Acetone Extract From Natural Rubber on the Structure and Interface Interaction in NR/CB Composites”, RSC Adv., 7, 2645826467 (2017) 10.1039/C7RA03354KSuche in Google Scholar

Zhang, X., Ma, W., Zhou, Z. and Li, H., “Characterization of Environment-Friendly Aromatic Oil Extended ESBR for Tread Compound by RPA2000”, Tire Ind., 8, 477480 (2009)Suche in Google Scholar

Zhang, X., Zhao, J. and Chen, R., “Determination of Rolling Resistance in Tire from the Semi-Finished Product”, Tire Ind., 36, 564566 (2016)Suche in Google Scholar

Received: 2018-08-23
Accepted: 2019-08-27
Published Online: 2020-02-24
Published in Print: 2020-03-06

© 2020, Carl Hanser Verlag, Munich

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3751/html
Button zum nach oben scrollen