Grafting of Biodegradable Polyesters on Cellulose for Biocomposites: Characterization and Biodegradation
-
F. E. Tabaght
, A. El Idrissi , A. Benarbia , N. Achelhi , M. Aqil , S. El Barkany , R. Bellaouchi and A. Asehraou
Abstract
Sustainable, biodegradable and thermoplastic processable aliphatic polyesters (polybutylene succinate (PBS) and polyethylene succinate (PES)) were prepared and characterized; then, they were grafted onto cellulose micro-fibers using a simple click reaction. This modification was conducted under simple experimental conditions. The characterization (NMR and FTIR analysis), thermal properties, solubility, morphology and biodegradation process of the all products prepared were established and studied. The results show that the solubility of the prepared derivatives is improved in comparison with cellulose, while their thermal stability showed a slight decrease compared to the starting materials. The composites derived from the modified cellulose show a slight decrease in their biodegradability in comparison with that of unmodified cellulose due to several parameters.
References
Bao, L., Chen, Y. W., Zhou, W. H., Wu, Y. and Huang, Y. L., “Bamboo Fibers @ Poly(ethylene glycol)-Reinforced Poly(butylene succinate) Biocomposites”, J. Appl. Polym. Sci., 122, 2456–2466 (2011) 10.1002/appSearch in Google Scholar
Belmares, M., Blanco, M., Goddard, W. A., Ross, R. B., Caldwell, G., Chou, S. H., Pham, J., Olofson, P. M. and Thomas, C., “Hildebrand and Hansen Solubility Parameters from Molecular Dynamics with Applications to Electronic Nose Polymer Sensors”, J. Comput. Chem., 25, 1814–1826 (2004) 10.1002/jcc.20098Search in Google Scholar
Benarbia, A., Elidrissi, A., Bellaouchi, R. and Asehraou, A., “Polybutylene Succinate Preparation and Biodegradation Study of Cellulose and Cellulose Blends”, Int. J. Eng. Tech. Res., 3, 348–354 (2015)Search in Google Scholar
Cadar, O., Paul, M., Roman, C., Miclean, M. and Majdik, C., “Biodegradation Behaviour of Poly(lactic acid) and (lactic acid-ethylene glycol-malonic or succinic acid) Copolymers under Controlled Composting Conditions in a Laboratory Test System”, Polym. Degrad. Stab., 97, 354–357 (2012) 10.1016/j.polymdegradstab.2011.12.006Search in Google Scholar
Calabia, B. P., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M. and Funabashi, M., “Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent”, Polymer, 5, 128–141(2013) 10.3390/polym5010128Search in Google Scholar
Calmon-Decriaud, A., Bellon-Maurel, V. and Silvestre, F., “Standard Methods for Testing the Aerobic Biodegradation of Polymeric Materials. Review and Perspectives”, Adv. Polym. Sci., 135, 207–226 (1998) 10.1007/3-540-69191-X_3Search in Google Scholar
Cao, A., Okamura, T., Nakayama, K., Inoue, Y. and Masuda, T., “Studies on Syntheses and Physical Properties of Biodegradable Aliphatic Poly(butylene succinate-co-ethylene succinate)s and Poly(butylene succinate-co-diethylene glycol succinate)s”, Polym. Degrad. Stab., 78, 107–117 (2002) 10.1016/S0141-3910(02)00124-6Search in Google Scholar
Cevahir, A., “Chapter 5 Glass Fibers”, in Fiber Technology for Fiber-Reinforced Composites, Özgür Seydibeyoğlu, M., Mohanty, A. K. and Misra, M. (Eds.), Elsevier, Cambridge, p. 99–121 (2007) 10.1016/B978-0-08-101871-2.00005-9Search in Google Scholar
Chang, L. J., “Reactive Blending of Biodegradable Polymers: PLA and Starch”, J. Polym. Environ., 8, 33–37 (200) 10.1023/A:1010172112118Search in Google Scholar
Chen, C.-H., Lu, H.-Y., Chen, M., Peng, J.-S., Tsai, C.-Y. and Yang, C.-S., “Synthesis and Characterization of Poly(ethylene succinate) and its Copolyesters Containing Minor Amounts of Butylene Succinate”, J. Appl. Polym. Sci., 111, 1433–1439 (2008) 10.1002/app.29035Search in Google Scholar
Chrissafis, K., Paraskevopoulos, K. M. and Bikiaris, D. N., “Thermal Degradation Mechanism of Poly(ethylene succinate) and Poly(butylene succinate): Comparative Study”, Thermochim. Acta, 435, 142–150 (2005) 10.1016/j.tca.2005.05.011Search in Google Scholar
Číhal, P., Vopička, O., Lanč, M., Kludský, M., Velas, J., Hrdlička, Z., Michalcová, A., Dendisová, M. and Friess, K., “Poly(butylene succinate)-Cellulose Triacetate Blends: Permeation, Pervaporation, Sorption and Physical Structure”, Polym. Test., 65, 468–479 (2018) 10.1016/j.polymertesting.2017.12.026Search in Google Scholar
Cunha, A. G., Freire, C. S. R., Silvestre, A. J. D., Neto, C. P., Gandini, A., Orblin, E. and Fardim, P., “Bi-Phobic Cellulose Fibers Derivatives via Surface Trifluoropropanoylation”, Langmuir, 23, 10801–10806 (2007) PMid:17854212; 10.1021/la7017192Search in Google Scholar PubMed
Díaz, A., Katsarava, R. and Puiggalí, J., “Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s”, Int. J. Mol. Sci., 15, 7064–7123 (2014) 10.3390/ijms15057064Search in Google Scholar PubMed PubMed Central
El Idrissi, A., El Barkany, S., Amhamdi, H. and Maaroufi, A. K., “Physicochemical Characterization of Celluloses Extracted from Esparto ‘Stipa Tenacissima’ of Eastern Morocco”, J. Appl. Polym. Sci., 128, 537–548 (2013) 10.1002/app.37500Search in Google Scholar
Ertekin, M., “Chapter 7 Aramid Fibers”, in Fiber Technology for Fiber-Reinforced Composites, Seydibeyoğlu, M. Ö., Mohanty, A. K. and Misra, M. (Eds.), Elsevier, Cambridge, p. 153–167 (2017) 10.1016/B978-0-08-101871-2.00007-2Search in Google Scholar
Frollini, E., Bartolucci, N., Sisti, L. and Celli, A., “Poly(butylene succinate) Reinforced with Different Lignocellulosic Fibers”, Ind. Crops Prod., 45, 160–169 (2013) 10.1016/j.indcrop.2012.12.013Search in Google Scholar
Gan, L., Wang, Y., Zhang, M., Xia, X. H. and Huang, J., “Hierarchically Spacing DNA Probes on Bio-Based Nanocrystal for Spatial Detection Requirements”, Sci. Bull., 64, 934–940 (2019) 10.1016/j.scib.2019.05.013Search in Google Scholar
Han, S. O., Son, W. K., Youk, J. H. and Park, W. H., “Electrospinning of Ultrafine Cellulose Fibers and Fabrication of Poly(butylene succinate) Biocomposites Reinforced by Them”, J. Appl. Polym. Sci., 107, 1954–1959 (2008) 10.1002/app.26643Search in Google Scholar
He, Y.-S., Zeng, J. B., Li, S.-L. and Wang, Y.-Z., “Crystallization Behavior of Partially Miscible Biodegradable Poly(butylene succinate)/Poly(ethylene succinate) Blends”, Thermochim. Acta, 529, 80–86 (2012) 10.1016/j.tca.2011.11.031Search in Google Scholar
Huang, A., Peng, X.-F., Geng, L.-H., Zhang, L.-G., Huang, K.-Q., Chen, B.-Y., Gu, Z.-P. and Kuang, T.-R., “Electrospun Poly(butylene succinate)/Cellulose Nanocrystals Bio-Nanocomposite Scaffolds for Tissue Engineering: Preparation, Characterization and in Vitro Evaluation”, Polym. Test., 71, 101–109 (2018) 10.1016/j.polymertesting.2018.08.027Search in Google Scholar
Jandura, P., Kokta, B. V. and Riedl, B., “Fibrous Long-Chain Organic Acid Cellulose Esters and their Characterization by Diffuse Reflectance FTIR Spectroscopy, Solid-State CP/MAS 13 C-NMR, and X-Ray Diffraction”, J. Appl. Polym. Sci., 78, 1354–1365 (2000) 10.1002/1097-4628(20001114)78:7<1354::AID-APP60>3.3.CO;2-MSearch in Google Scholar
Jiang, N., Zhao, L.-F. and Gan, Z.-H., “Influence of Nucleating Agent on the Formation and Enzymatic Degradation of Poly(butylene adipate) Polymorphic Crystals”, Polym. Degrad. Stab., 95, 1045–1053 (2010) 10.1016/j.polymdegradstab.2010.03.004Search in Google Scholar
Kim, M. N., Kim, K. H., Jin, H. J., Park, J. K. and Yoon, J. S., “Biodegradability of Ethyl and N-Octyl Branched Poly(ethylene adipate) and Poly(butylene succinate)”, Eur. Polym. J., 37, 1843–1847 (2001) 10.1016/S0014-3057(01)00003-9Search in Google Scholar
Krzan, A., Hemjinda, S., Miertus, S., Corti, A. and Chiellini, E., “Standardization and Certification in the Area of Environmentally Degradable Plastics”, Polym. Degrad. Stab., 91, 2819–2833 (2006) 10.1016/j.polymdegradstab.2006.04.034Search in Google Scholar
Lafdi, K., Wright, M. A., “Chapter 6 Carbon Fibers”, in Fiber Technology for Fiber-Reinforced Composites, Seydibeyoğlu, M. Ö., Mohanty, A. K. and Misra, M. (Eds.), Elsevier, Cambridge, p. 123–151 (2017) 10.1016/B978-0-08-101871-2.00006-0Search in Google Scholar
Lee, S. H., Wang, S.-Q., “Biodegradable Polymers/Bamboo Fiber Biocomposite with Bio-Based Coupling Agent”, Composites Part A, 37, 80–91 (2006) 10.1016/j.compositesa.2005.04.015Search in Google Scholar
Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R. and Montanes, N., “Development and Characterization of Environmentally Friendly Composites from Poly(butylene succinate) (PBS) and Almond Shell Flour with Different Compatibilizers”, Composites Part B, 144, 153–162 (2018) 10.1016/j.compositesb.2018.02.031Search in Google Scholar
Liu, L.-F., Yu, J.-Y., Cheng, L.-D. and Qu, W.-W., “Mechanical Properties of Poly(Butylene Succinate) (PBS) Biocomposites Reinforced with Surface Modified Jute Fibre”, Composites Part A, 40, 669–674 (2009) 10.1016/j.compositesa.2009.03.002Search in Google Scholar
Liu, L.-F., Yu, J.-Y., Cheng, L.-D. and Yang, X.-J., “Biodegradability of Poly(butylene succinate) (PBS) Composite Reinforced with Jute Fibre”, Polym. Degrad. Stab., 94, 90–94 (2009) 10.1016/j.polymdegradstab.2008.10.013Search in Google Scholar
Lu, J.-M., Qiu, Z.-B. and Yang, W.-T., “Fully Biodegradable Blends of Poly(L-lactide) and Poly(ethylene succinate): Miscibility, Crystallization, and Mechanical Properties”, Polymer, 48, 4196–4204 (2007) 10.1016/j.polymer.2007.05.035Search in Google Scholar
Lu, X., Zhang, M.-Q., Rong, M.-Z., Shi, G. and Yang, G.-C., “Self-Reinforced Melt Processable Composites of Sisal”, Compos. Sci. Technol., 63, 177–186 (2003) 10.1016/S0266-3538(02)00204-XSearch in Google Scholar
Mabrouk, A. B., Kaddami, H., Boufi, S., Erchiqui, F. and Dufresne, A., “Cellulosic Nanoparticles from Alfa Fibers (Stipa Tenacissima): Extraction Procedures and Reinforcement Potential in Polymer Nanocomposites”, Cellulose, 19, 843–853 (2012) 10.1007/s10570-012-9662-zSearch in Google Scholar
Moura, I., Machado, A. V., Duarte, F. M. and Nogueira, R., “Biodegradability Assessment of Aliphatic Polyesters-Based Blends Using Standard Methods”, J. Appl. Polym. Sci., 119, 3338–3346 (2011) 10.1002/app.32966Search in Google Scholar
Muthuraj, R., Misra, M. and Mohanty, A. K., “Chapter 5 Studies on Mechanical, Thermal, and Morphological Characteristics of Biocomposites from Biodegradable Polymer Blends and Natural Fibers”, in Biocomposites: Design and Mechanical Performance, Elsevier, Cambridge, p. 93–140 (2015) 10.1016/B978-1-78242-373-7.00014-7Search in Google Scholar
Nam, T. H., Ogihara, S., Tung, N. H. and Kobayashi, S., “Effect of Alkali Treatment on Interfacial and Mechanical Properties of Coir Fiber Reinforced Poly(butylene succinate) Biodegradable Composites”, Composites Part B, 42, 1648–1656 (2011) 10.1016/j.compositesb.2011.04.001Search in Google Scholar
Oliveros, L., Senso, A., Franco, P. and Minguillón, C., “Carbamates of Cellulose Bonded on Silica Gel: Chiral Discrimination Ability as HPLC Chiral Stationary Phases”, Chirality, 10, 283–288 (1998) 10.1002/(SICI)1520-636X(1998)10:4<283::AID-CHIR1>3.0.CO;2-9Search in Google Scholar
Papageorgiou, G. Z., Terzopoulou, Z., Achilias, D. S., Bikiaris, D. N., Kapnisti, M. and Gournis, D., “Biodegradable Poly(ethylene succinate) Nanocomposites. Effect of Filler Type on Thermal Behaviour and Crystallization Kinetics”, Polymer, 54, 4604–4616 (2013) 10.1016/j.polymer.2013.06.005Search in Google Scholar
Plackett, D., “Chapter 8 Biodegradable Polymer Composites from Natural Fibres”, in Biodegradable Polymers for Industrial Applications, Smith, R. (Ed.), Woodhead, Cambridge, p. 189–218 (2005) 10.1533/9781845690762.2.189Search in Google Scholar
Qiu, Z.-B., Fujinami, S., Komura, M., Nakajima, K., Ikehara, T. and Nishi, T., “Miscibility and Crystallization of Poly(ethylene succinate)/Poly(vinyl phenol) Blends”, Polymer45, 4515–4521 (2004) 10.1016/j.polymer.2004.04.033Search in Google Scholar
Qiu, Z.-B., Ikehara, T. and Nishi, T., “Crystallization Behaviour of Biodegradable Poly(ethylene succinate) from the Amorphous State”, Polymer, 44, 5429–5437 (2003) 10.1016/S0032-3861(03)00577-9Search in Google Scholar
Shah, A. A., Hasan, F., Hameed, A. and Ahmed, S., “Biological Degradation of Plastics: A Comprehensive Review”, Biotechnol. Adv., 26, 246–265 (2008) 10.1016/j.biotechadv.2007.12.005Search in Google Scholar
Shi, K., Liu, Y., Hu, X.-Y., Su, T.-T., Li, P. and Wang, Z.-Y., “Preparation, Characterization, and Biodegradation of Poly(butylene succinate)/Cellulose Triacetate Blends”, Int. J. Biol. Macromol., 114, 373–380 (2018) 10.1016/j.ijbiomac.2018.03.151Search in Google Scholar
Terzopoulou, Z. N., Papageorgiou, G. Z., Papadopoulou, E., Alexopoulou, E. and Bikiaris, D. N., “Green Composites Prepared from Aliphatic Polyesters and Bast Fibers”, Ind. Crops Prod., 68, 60–79 (2015) 10.1016/j.indcrop.2014.08.034Search in Google Scholar
Then, Y. Y., Ibrahim, N. A., Zainuddin, N., Chieng, B. W., Ariffin, H. and Yunus, W. M., Z. W., “Effect of 3-Aminopropyltrimethoxysilane on Chemically Modified Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposite”, BioResources, 10, 3577–3601 (2015) 10.15376/biores.10.2.3577-3601Search in Google Scholar
Tokiwa, Y., Calabia, B. P., “Degradation of Microbial Polyesters”, Biotechnol. Lett., 26, 1181–1189 (2004) 10.1023/B:BILE.0000036599.15302.e5Search in Google Scholar
Tribedi, P., Sil, A. K., “Cell Surface Hydrophobicity: A Key Component in the Degradation of Polyethylene Succinate by Pseudomonas sp.AKS2”, J. Appl. Microbiol., 116, 295–303 (2013) 10.1111/jam.12375Search in Google Scholar
Uesaka, T., Nakane, K., Maeda, S., Ogihara, T. and Ogata, N., “Structure and Physical Properties of Poly(butylene succinate)/Cellulose Acetate Blends”, Polymer, 41, 8449–8454 (2000) 10.1016/S0032-3861(00)00206-8Search in Google Scholar
Uesaka, T., Ogata, N., Nakane, K., Shimizu, K. and Ogihara, T., “Structure and Physical Properties of Cellulose Acetate/Poly(butylene succinate) Blends Containing a Transition Metal Alkoxide”, J. Appl. Polym. Sci., 83, 1750–1758 (2001) 10.1002/app.10104Search in Google Scholar
Wang, X.-H., Huang, S. H., Wang, Y. P., Wei, P., Chen, Y.-W., Xia, Y.-M. and Wang, Y.-M., “Eco-Friendly Cellulose Acetate Butyrate/Poly(butylene succinate) Blends: Crystallization, Miscibility, Thermostability, Rheological and Mechanical Properties”, J. Polym. Res., 16, 1–9 (2017) 10.1007/s10965-016-1165-4Search in Google Scholar
Wu, L.-M., Tong, D.-S., Zhao, L.-Z., Yu, W.-H., Zhou, C.-H. and Wang, H., “Fourier Transform Infrared Spectroscopy Analysis for Hydrothermal Transformation of Microcrystalline Cellulose on Montmorillonite”, Appl. Clay Sci., 95, 74–82 (2014) 10.1016/j.clay.2014.03.014Search in Google Scholar
Xu, J., Guo, B.-H., “Poly(butylene succinate) and its Copolymers: Research, Development and Industrialization”, Biotechnol. J., 5, 1149–1163 (2010) 10.1002/biot.201000136Search in Google Scholar PubMed
Yin, C.-Y., Shen, X.-Y., “Synthesis of Cellulose Carbamate by Supercritical CO2-Assisted Impregnation: Structure and Rheological Properties”, Eur. Polym. J., 43, 2111–2116 (2007) 10.1016/j.eurpolymj.2007.01.041Search in Google Scholar
Zhou, W.-H., Yuan, S.-S., Chen, Y.-W. and Bao, L., “Morphology and Hydrogen-Bond Restricted Crystallization of Poly(butylene succinate)/Cellulose Diacetate Blends”, J. Appl. Polym. Sci., 124, 3124–3131 (2012) 10.1002/app.35351Search in Google Scholar
Zorba, T., Chrissafis, K., Paraskevopoulos, K. M. and Bikiaris, D. N., “Synthesis, Characterization and Thermal Degradation Mechanism of Three Poly(alkylene adipate)s: Comparative Study”, Polym. Degrad. Stab., 92, 222–230 (2007) 10.1016/j.polymdegradstab.2006.11.009Search in Google Scholar
© 2020, Carl Hanser Verlag, Munich
Articles in the same Issue
- Contents
- Contents
- Review Article
- Fluid-Powered Projectile-Assisted Injection Molding: Principles and Developments
- Regular Contributed Articles
- Correlations between the Hysteresis Parameters Determining the Rolling Resistance in Rubber Composites
- Global Modeling for Single Screw Extrusion of Viscoplastics
- Enhanced Dispersive Mixing in Twin-Screw Extrusion via Extension-Dominated Static Mixing Elements of Varying Contraction Ratios
- EPDM-G-GMA Toughening of Straw/Polypropylene Composites: Mechanical Properties, Thermal Stability and Rheological Properties
- In Situ Assembly of LDPE/PA6 Multilayer Structure by Stirring
- Modeling and Estimation of the Pressure and Temperature dependent Bulk Density of Polymers
- Influence of ABS Type and Compatibilizer on the Thermal and Mechanical Properties of PC/ABS Blends
- Analysis of Self-Reinforced Mechanism of Over-Molding Polypropylene Parts
- Grafting of Biodegradable Polyesters on Cellulose for Biocomposites: Characterization and Biodegradation
- PPS News
- PPS News
Articles in the same Issue
- Contents
- Contents
- Review Article
- Fluid-Powered Projectile-Assisted Injection Molding: Principles and Developments
- Regular Contributed Articles
- Correlations between the Hysteresis Parameters Determining the Rolling Resistance in Rubber Composites
- Global Modeling for Single Screw Extrusion of Viscoplastics
- Enhanced Dispersive Mixing in Twin-Screw Extrusion via Extension-Dominated Static Mixing Elements of Varying Contraction Ratios
- EPDM-G-GMA Toughening of Straw/Polypropylene Composites: Mechanical Properties, Thermal Stability and Rheological Properties
- In Situ Assembly of LDPE/PA6 Multilayer Structure by Stirring
- Modeling and Estimation of the Pressure and Temperature dependent Bulk Density of Polymers
- Influence of ABS Type and Compatibilizer on the Thermal and Mechanical Properties of PC/ABS Blends
- Analysis of Self-Reinforced Mechanism of Over-Molding Polypropylene Parts
- Grafting of Biodegradable Polyesters on Cellulose for Biocomposites: Characterization and Biodegradation
- PPS News
- PPS News