Startseite Preparation and Performance Evaluation of SPEEK/Polyaniline Composite Membrane for Direct Methanol Fuel Cell
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and Performance Evaluation of SPEEK/Polyaniline Composite Membrane for Direct Methanol Fuel Cell

  • A. S. Sultan , J. K. Adewole , A. Al-Ahmed , M. Nazal und S. M. Javaid Zaidi
Veröffentlicht/Copyright: 20. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Polymer composites comprising sulfonated poly(ether ether ketone) (SPEEK) and 10 to 50 wt% of Poly(trimellitic anhydride chloride-co-4,4′-methylenedianiline) (PTCMA) were prepared by solution casting. The effects of PTCMA concentrations on morphological, thermal and transport properties (water uptake, methanol permeability, ion exchange capacity and proton conductivity) were investigated. A morphological analysis revealed an homogenous dense microstructure for all the composites. Also, transport property tests revealed that the water uptake, methanol permeability and ion exchange capacity were enhanced by the addition of PTCMA whereas proton conductivity deteriorated. As shown by a thermogravimetric analysis, the difference between the thermal properties of the pure SPEEK and the composites was insignificant. Overall, the composites were observed to display a better global performance in terms of transport properties than pure SPEEK.


*Correspondence address, Mail address: Jimoh K. Adewole, Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, E-mail:

References

Dutta, K., Das, S. and Kundu, P. P., “Partially Sulfonated Polyaniline Induced High Ion-Exchange Capacity and Selectivity of Nafion Membrane for Application in Direct Methanol Fuel Cells”, J. Membr. Sci., 473, 94101 (2015) 10.1016/j.memsci.2014.09.010Suche in Google Scholar

Ergun, D., Y.Devrim, Bac, N. and Eroglu, I., “Phosphoric Acid Doped Polybenzimidazole Membrane for High Temperature PEM Fuel Cell”, J. Appl. Polym. Sci., 124 (S1), E267E277 (2012) 10.1002/app.36507Suche in Google Scholar

Gil, M., Ji, X., Li, X., Na, H., Hampsey, J. E. and Lu, Y., “Direct Synthesis of Sulfonated Aromatic Poly(ether ether ketone) Proton Exchange Membranes for Fuel Cell Applications”, J. Membr. Sci., 234 (1–2), 7581 (2004) 10.1016/j.memsci.2003.12.021Suche in Google Scholar

Hamrock, S. J., Yandrasits, M. A., “Proton Exchange Membranes for Fuel Cell Applications”, J. Macromol. Sci., Part C, 46, 219244 (2006) 10.1080/15583720600796474Suche in Google Scholar

Jia, L., Xu, X., Zhang, H. and Xu, J., “Sulfonation of Polyetheretherketone and its Effects on Permeation Behavior to Nitrogen and Water Vapor”, J. Appl. Polym. Sci., 60, 12311237 (1996) 10.1002/(SICI)1097-4628(19960523)60:8<1231::AID-APP16>3.0.CO;2-4Suche in Google Scholar

Li, X., Chen, D., Xu, D., Zhao, C., Wang, Z., Lu, H. and Na, H., “SPEEKK/Polyaniline (PANI) Composite Membranes for Direct Methanol Fuel Cell Usages”, J. Membr. Sci., 275, 134140 (2006) 10.1016/j.memsci.2005.09.018Suche in Google Scholar

Li, X., Liu, C., Xu, D., Zhao, C., Wang, Z., Zhang, G., Na, H. and Xing, W., “Preparation and Properties of Sulfonated Poly(ether ether ketone)s (SPEEK)/Polypyrrole Composite Membranes for Direct Methanol Fuel Cells.J. Power Sources, 162, 18 (2006) 10.1016/j.jpowsour.2006.06.030Suche in Google Scholar

Pintauro, P. N., Wycisk, R.: Fuel Cell Membranes. Advanced Membrane Technology and Applications, John Wiley & Sons, Hoboken, P. 755786 (2008) 10.1002/9780470276280.ch29Suche in Google Scholar

Popescu, M., Melita, L.: Technological Applications of Composite Membranes. Membrane Technologies and Applications, Mohanty, K., Purkait, M. K. (Eds.), CRC Press, Boca Raton (2012)Suche in Google Scholar

Ren, S., Li, C., Zhao, X., Wu, Z., Wang, S., Sun, G., Xin, Q. and Yang, X., “Surface Modification of Sulfonated Poly(ether ether ketone) Membranes Using Nafion Solution for Direct Methanol Fuel Cells”, J. Membr.Sci., 247, 5963 (2005) 10.1016/j.memsci.2004.09.006Suche in Google Scholar

Rikukawa, M., Sanui, K., “Proton-Conducting Polymer Electrolyte Membranes Based on Hydrocarbon Polymers”, Prog. Polym. Sci., 25, 14631502 (2000) 10.1016/S0079-6700(00)00032-0Suche in Google Scholar

Shan, J., Vaivars, G., Luo, H., Mohamed, R. and Linkov, V., “Sulfonated Polyether Ether Ketone (PEEK-WC)/Phosphotungstic Acid Composite: Preparation and Characterization of the Fuel Cell Membranes”, Pure Appl. Chem.78, 17811791 (2006) 10.1351/pac200678091781Suche in Google Scholar

Sharma, S., Mohanty, K.: Membranes for Fuel Cell Application Hybrid Organic and Inorganic Membranes. Membrane Technologies and Applications, Mohanty, K., Purkait, M. K. (Eds.), CRC Press Taylor and Francis Group, New York (2012)Suche in Google Scholar

Unnikrishnan, L., Mohanty, S., Nayak, S. K. and Singh, N., “Synthesis and Characterization of Polysulfone/Clay Nanocomposite Membranes for Fuel Cell Application”, J. Appl. Polym. Sci., 124 (S1), E309E318 (2012) 10.1002/app.34355Suche in Google Scholar

Wolz, A., Zils, S., Michel, M. and Roth, C., “Structured Multilayered Electrodes of Proton/Electron Conducting Polymer for Polymer Electrolyte Membrane Fuel Cells Assembled by Spray Coating”, J. Power Sources, 195(24), 81628167 (2010) 10.1016/j.jpowsour.2010.06.087Suche in Google Scholar

Wu, H.-L., Ma, C.-C. M., Kuan, H.-C., Wang, C.-H., Chen, C.-Y. and Chiang, C.-L., “Sulfonated Poly(ether ether ketone)/Poly(vinylpyrrolidone) Acid–Base Polymer Blends for Direct Methanol Fuel Cell Application”, J. Polym. Sci., Part B: Polym. Phys., 44, 565572 (2006) 10.1002/polb.20717Suche in Google Scholar

Wu, H.-L., Ma, C.-C. M., Liu, F.-Y., Chen, C.-Y., Lee, S.-J. and Chiang, C.-L., “Preparation and Characterization of Poly(ether sulfone)/Sulfonated Poly(ether ether ketone) Blend Membranes”, Eur. Polym. J., 42, 16881695 (2006) 10.1016/j.eurpolymj.2006.01.018Suche in Google Scholar

Xing, D. M., Yi, B. L., Liu, F. Q., Fu, Y. Z. and Zhang, H. M., “Characterization of Sulfonated Poly(ether ether ketone)/Polytetrafluoroethylene Composite Membranes for Fuel Cell Applications”, Fuel Cells Bull., 5, 406411 (2005) 10.1002/fuce.200500089Suche in Google Scholar

Xing, P., Robertson, G. P., Guiver, M. D., Mikhailenko, S. D., Wang, K. and Kaliaguine, S., “Synthesis and Characterization of Sulfonated Poly(ether ether ketone) for Proton Exchange Membranes”, J. Membr. Sci., 229, 95106 (2004) 10.1016/j.memsci.2003.09.019Suche in Google Scholar

Xue, S., Yin, G., Cai, K. and Shao, Y., “Permeabilities of Methanol, Ethanol and Dimethyl Ether in New Composite Membranes: A Comparison with Nafion Membranes”, J. Membr. Sci., 289, 5157 (2007) 10.1016/j.memsci.2006.11.036Suche in Google Scholar

Ye, Y.-S., Rick, J. and Hwang, B.-J., “Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells”, Polymers, 4, 913963 (2012)10.3390/polym4020913Suche in Google Scholar

Zhang, H., Li, X., Zhao, C., Fu, T., Shi, Y. and Na, H., “Composite Membranes Based on Highly Sulfonated PEEK and PBI: Morphology Characteristics and Performance”, J. Membr. Sci., 308, 6674 (2008) 10.1016/j.memsci.2007.09.045Suche in Google Scholar

Zhong, S., Cui, X., Fu, T. and Na, H., “Modification of Sulfonated Poly(ether ether ketone) Proton Exchange Membrane for Reducing Methanol Crossover”, J. Power Sources, 180, 2328 (2008) 10.1016/j.jpowsour.2008.02.043Suche in Google Scholar

Zhou, H., Miyatake, K. and Watanabe, M., “Polyimide Electrolyte Membranes Having Fluorenyl and Sulfopropoxy Groups for High Temperature PEFCs”, Fuel Cells, 5, 296301 (2005)10.1002/fuce.200400063Suche in Google Scholar

Zhu, J., Sattler, R. R., Garsuch, A., Yepez, O. and Pickup, G. P., “Optimisation of Polypyrrole/Nafion Composite Membranes for Direct Methanol Fuel Cells”, Electrochimica Acta, 51, 40524060 (2006) 10.1016/j.electacta.2005.11.024Suche in Google Scholar

Received: 2016-02-02
Accepted: 2016-07-24
Published Online: 2017-02-20
Published in Print: 2017-03-03

© 2017, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. New Associate Editor for the Americas
  5. Regular Contributed Articles
  6. Effect of Flow Induced Orientation of Carbon Nanotubes on the Capillary Extrusion Behavior of Low-Density Polyethylene
  7. Mullins Effect under Compression Mode and its Reversibility of Thermoplastic Vulcanizate Based on Ethylene-Vinyl Acetate Copolymer/Styrene-Butadiene Rubber Blend
  8. Bio-Based Hybrid Polymers from Vinyl Ester Resin and Modified Palm Oil: Synthesis and Characterization
  9. Study on Crystal Form Transition and Non-Isothermal Crystallization of Glycidyl Methacrylate Grafted Isotactic Polybutene-1
  10. Flashing Method for Fabricating Micro Scale Fibers, Spheres, Porous and Condensed Polymer Structures
  11. Preparation and Performance Evaluation of SPEEK/Polyaniline Composite Membrane for Direct Methanol Fuel Cell
  12. Rotational Molding of Linear Low Density Polyethylene (LLDPE) Fumed Silica Nanocomposites
  13. Design Guidelines to Balance the Flow Distribution in Complex Profile Extrusion Dies
  14. Microstructure and Mechanical Properties of Nanocomposite Based on Polypropylene/Ethylene Propylene Diene Monomer/Graphene
  15. An Engineering Model that Simulates Pantographing Occurring in the Shaping Process of Reinforced Uncured Rubber Parts
  16. The Influence of Different Melt Temperatures on the Mechanical Properties of Injection Molded PA-12 and the Post Process Detection by Thermal Analysis
  17. Morphology and Thermal Behavior of TPU/PP Blends Modified with Maleic Anhydride Grafted SEBS-g-MA Block Copolymer
  18. Extrusion Blow Molding of Polymeric Blends Based on Thermotropic Liquid Crystalline Polymer and High Density Polyethylene
  19. Characterization of Stereocomplex Polylactide/Nanoclay Nanocomposites
  20. Attempts to Optimize the Dispersion State during Twin-Screw Extrusion of Polypropylene/Clay Nanocomposites
  21. Rapid Communications
  22. Improved Layer Mechanical Properties of Micro Injection Molded PP
  23. PPS News
  24. PPS News
  25. Seikei Kakou Abstracts
  26. Seikei-Kakou Abstracts
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3259/html
Button zum nach oben scrollen