Design Guidelines to Balance the Flow Distribution in Complex Profile Extrusion Dies
-
A. Rajkumar
Abstract
In this work a novel methodology to balance the flow distribution in complex extrusion dies is proposed. For this purpose, the profile cross section geometry is divided into simpler geometries (L and T shaped profiles), which are balanced with a surrogate model obtained by a detailed numerical study. The numerical simulations are performed considering the non-isothermal flow of Bird-Carreau inelastic fluids, and the numerical computations are performed with a solver implemented in OpenFOAM computational library. The proposed methodology is assessed with some case studies.
References
Carneiro, O. S.Nóbrega, J. M., Oliveira, P. J. and Pinho, F. T., “Flow Balancing in Extrusion Dies for Thermoplastic Profiles: Part II: Influence of the Design Strategy”, Int. Polym. Proc., 18, 307–312 (2003) 10.3139/217.1746Search in Google Scholar
Carneiro, O. S., Nóbrega, J. M., Oliveira, P. J. and Pinho, F. T., “Accounting for Temperature-Dependent Properties in Viscoelastic Duct Flows”, Int. J. Heat Mass Transfer, 47, 1141–1158 (2004) 10.1016/j.ijheatmasstransfer.2003.10.004Search in Google Scholar
Carneiro, O. S., Nobrega, J. M.: Design of Extrusion Forming Tools, Smithers Rapra Technology Ltd., Shawbury, Shrewsbury, Shropshire (2012)Search in Google Scholar
Elgeti, S., Probst, M., Windeck, C., Behr, M., Michaeli, W. and Hopmann, C., “Numerical Shape Optimization as an Approach to Extrusion Die Design”, Finite Elem. Anal. Des., 61, 35–43 (2012) 10.1016/j.finel.2012.06.008Search in Google Scholar
Ettinger, H., Pittman, J. and Sienz, J., “Optimization-Driven Design of Dies for Profile Extrusion: Parameterization, Strategy, and Performance”, Polym. Eng. Sci., 53, 189–203 (2013) 10.1002/pen.23228Search in Google Scholar
Ettinger, H., Sienz, J., Pittman, J. and Polynkin, A., “Parameterization and Optimization Strategies for the Automated Design of UPVC Profile Extrusion Dies”, Struct. Multidiscip. Optim., 28, 180–194 (2004) 10.1007/s00158-004-0440-xSearch in Google Scholar
Flow2000, Compuplast, http://www.compuplast.comSearch in Google Scholar
Goncalves, N. D. F., “Computer Aided Design of Extrusion Forming Tools for Complex Geometry Profiles”, Ph.D Thesis, University of Minho, Guimarães, Portugal (2013)Search in Google Scholar
Harten, A., “High Resolution Schemes for Hyperbolic Conservation Laws”, J. Comput. Phys., 49, 357–393 (1983) 10.1016/0021-9991(83)90136-5Search in Google Scholar
Huneault, M., Lafleur, P. and Carreau, P., “Evaluation of the FAN Technique for Profile Die Design”, Int. Polym. Proc., 11, 50–57 (1996) 10.3139/217.960050Search in Google Scholar
Hurez, P., Tanguy, P. and Blouin, D., “A New Design Procedure for Profile Extrusion Dies”, Polym. Eng. Sci., 36, 626–635 (1996) 10.1002/pen.10450Search in Google Scholar
Jasak, H., Jemcov, A. and Tukovic, Z., “Openfoam: A C++ Library for Complex Physics Simulations”, International Workshop on Coupled Methods in Numerical Dynamics, 1–20 (2007)Search in Google Scholar
Lebaal, N., Schmidt, F. and Puissant, S., “Design and Optimization of Three-Dimensional Extrusion Dies, Using Constraint Optimization Algorithm”, Finite Elem. Anal. Des., 45, 333–340 (2009) 10.1016/j.finel.2008.10.008Search in Google Scholar
Lehnhäuser, T., Schäfer, M., “A Numerical Approach for Shape Optimization of Fluid Flow Domains”, Comput. Meth. Appl. Mech. Eng., 194, 5221–5241 (2005) 10.1016/j.cma.2005.01.008Search in Google Scholar
Mckelvey, J. M., Ito, K., “Uniformity of Flow from Sheeting Dies”, Polym. Eng. Sci., 11, 258–263 (1971) 10.1002/pen.760110314Search in Google Scholar
Mehta, B. V., Ghulman, H. and Gerth, R., “Extrusion Die Design: A New Methodology of Using Design of Experiments as a Precursor to Neural Networks”, JOM-e, 51 (9) (1999), http://www.tms.org/pubs/journals/JOM/9909/Mehta/Mehta-9909.htmlSearch in Google Scholar
Michaeli, W.: Extrusion Dies Design and Engineering Computations, Hanser Publishers, Munich (1984)Search in Google Scholar
Nóbrega, J. M., Carneiro, O. S., Oliveira, P. J. and Pinho, F.T., “Flow Balancing in Extrusion Dies for Thermoplastic Profiles Part I: Automatic Design”, Int. Polym. Proc., 18, 298–306 (2003) 10.3139/217.1745Search in Google Scholar
Nóbrega, J. M., “Computer Aided Design of Forming Tools for the Production of Extruded Profiles”, Ph.D Thesis, University of Minho, Guimarães, Portugal (2004)Search in Google Scholar
Nóbrega, J. M., Carneiro, O. S., Oliveira, P. J. and Pinho, F. T., “Flow Balancing in Extrusion Dies for Thermoplastic Profiles: Part III: Experimental Assessment”, Int. Polym. Proc., 19, 225–235 (2004a) 10.3139/217.1825Search in Google Scholar
Nóbrega, J. M., Carneiro, O. S., Oliveira, P. J. and Pinho, F. T., “Automatic Balancing of Profile Extrusion Dies: Experimental Assessment”, SPE Annual Technical Conference ANTEC 2004, Chicago, USA (2004b)Search in Google Scholar
PatankarS.V., Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, Int. J. Heat Mass Transfer, 15, 1787–1806 (1972) 10.1016/0017-9310(72)90054-3Search in Google Scholar
Polycad, http://www.polydynamics.comSearch in Google Scholar
Sienz, J., Goublomme, A. and Luege, M., “Sensitivity Analysis for the Design of Profile Extrusion Dies”, Comput. Struct., 88, 610–624 (2010) 10.1016/j.compstruc.2010.02.003Search in Google Scholar
Summers, J., Brown, R., “Practical Principles of Die Design–A Simplified Procedure, in Table Form, for Rigid PVC”, J VINYL ADDIT TECHN, 3, 215–218 (1981) 10.1002/vnl.730030404Search in Google Scholar
Tadmor, Z., Gogos, C. G.: Principles of Polymer Processing, John Wiley & Sons, New Jersey (2006)Search in Google Scholar
Ulysse, P., “Optimal Extrusion Die Design to Achieve Flow Balance”, Int. J. Mach. Tools Manuf., 39, 1047–1064 (1999) 10.1016/S0890-6955(98)00082-0Search in Google Scholar
Ulysse, P., “Extrusion Die Design for Flow Balance Using FE and Optimization Methods”, Int. J. Mech. Sci., 44, 319–341 (2002) 10.1016/S0020-7403(01)00093-5Search in Google Scholar
Wolfram, S., Wolfram Mathematica, http://www.wolfram.com/mathematica/?source=navSearch in Google Scholar
Wortberg, J., Haberstroh, E., Lutterbeck, J., Masberg, U., Schmidt, J. and Targiel, G., “Designing of Extrusion Lines”, Adv. Polym. Technol., 2, 75–106 (1982) 10.1002/adv.1982.060020203Search in Google Scholar
Wu, C. Y., Hsu, Y. C., “Optimal Shape Design of an Extrusion Die Using Polynomial Networks and Genetic Algorithms”, Int. J. Adv. Manuf. Technol., 19, 79–87 (2002) 10.1007/s001700200000Search in Google Scholar
Yilmaz, O., Gunes, H. and Kirkkopru, K., “Optimization of a Profile Extrusion Die for Flow Balance”, Fibers Polym., 15, 753–761 (2014) 10.1007/s12221-014-0753-3Search in Google Scholar
Yu, Y. W., Liu, T. J., “A Simple Numerical Approach for the Optimal Design of an Extrusion Die”, J. Polym. Res., 5, 1–7 (1998) 10.1007/s10965-006-0033-zSearch in Google Scholar
© 2017, Carl Hanser Verlag, Munich
Articles in the same Issue
- Contents
- Contents
- Editorial
- New Associate Editor for the Americas
- Regular Contributed Articles
- Effect of Flow Induced Orientation of Carbon Nanotubes on the Capillary Extrusion Behavior of Low-Density Polyethylene
- Mullins Effect under Compression Mode and its Reversibility of Thermoplastic Vulcanizate Based on Ethylene-Vinyl Acetate Copolymer/Styrene-Butadiene Rubber Blend
- Bio-Based Hybrid Polymers from Vinyl Ester Resin and Modified Palm Oil: Synthesis and Characterization
- Study on Crystal Form Transition and Non-Isothermal Crystallization of Glycidyl Methacrylate Grafted Isotactic Polybutene-1
- Flashing Method for Fabricating Micro Scale Fibers, Spheres, Porous and Condensed Polymer Structures
- Preparation and Performance Evaluation of SPEEK/Polyaniline Composite Membrane for Direct Methanol Fuel Cell
- Rotational Molding of Linear Low Density Polyethylene (LLDPE) Fumed Silica Nanocomposites
- Design Guidelines to Balance the Flow Distribution in Complex Profile Extrusion Dies
- Microstructure and Mechanical Properties of Nanocomposite Based on Polypropylene/Ethylene Propylene Diene Monomer/Graphene
- An Engineering Model that Simulates Pantographing Occurring in the Shaping Process of Reinforced Uncured Rubber Parts
- The Influence of Different Melt Temperatures on the Mechanical Properties of Injection Molded PA-12 and the Post Process Detection by Thermal Analysis
- Morphology and Thermal Behavior of TPU/PP Blends Modified with Maleic Anhydride Grafted SEBS-g-MA Block Copolymer
- Extrusion Blow Molding of Polymeric Blends Based on Thermotropic Liquid Crystalline Polymer and High Density Polyethylene
- Characterization of Stereocomplex Polylactide/Nanoclay Nanocomposites
- Attempts to Optimize the Dispersion State during Twin-Screw Extrusion of Polypropylene/Clay Nanocomposites
- Rapid Communications
- Improved Layer Mechanical Properties of Micro Injection Molded PP
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei-Kakou Abstracts
Articles in the same Issue
- Contents
- Contents
- Editorial
- New Associate Editor for the Americas
- Regular Contributed Articles
- Effect of Flow Induced Orientation of Carbon Nanotubes on the Capillary Extrusion Behavior of Low-Density Polyethylene
- Mullins Effect under Compression Mode and its Reversibility of Thermoplastic Vulcanizate Based on Ethylene-Vinyl Acetate Copolymer/Styrene-Butadiene Rubber Blend
- Bio-Based Hybrid Polymers from Vinyl Ester Resin and Modified Palm Oil: Synthesis and Characterization
- Study on Crystal Form Transition and Non-Isothermal Crystallization of Glycidyl Methacrylate Grafted Isotactic Polybutene-1
- Flashing Method for Fabricating Micro Scale Fibers, Spheres, Porous and Condensed Polymer Structures
- Preparation and Performance Evaluation of SPEEK/Polyaniline Composite Membrane for Direct Methanol Fuel Cell
- Rotational Molding of Linear Low Density Polyethylene (LLDPE) Fumed Silica Nanocomposites
- Design Guidelines to Balance the Flow Distribution in Complex Profile Extrusion Dies
- Microstructure and Mechanical Properties of Nanocomposite Based on Polypropylene/Ethylene Propylene Diene Monomer/Graphene
- An Engineering Model that Simulates Pantographing Occurring in the Shaping Process of Reinforced Uncured Rubber Parts
- The Influence of Different Melt Temperatures on the Mechanical Properties of Injection Molded PA-12 and the Post Process Detection by Thermal Analysis
- Morphology and Thermal Behavior of TPU/PP Blends Modified with Maleic Anhydride Grafted SEBS-g-MA Block Copolymer
- Extrusion Blow Molding of Polymeric Blends Based on Thermotropic Liquid Crystalline Polymer and High Density Polyethylene
- Characterization of Stereocomplex Polylactide/Nanoclay Nanocomposites
- Attempts to Optimize the Dispersion State during Twin-Screw Extrusion of Polypropylene/Clay Nanocomposites
- Rapid Communications
- Improved Layer Mechanical Properties of Micro Injection Molded PP
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei-Kakou Abstracts