Home Semi-Rigid Composite Foams of Calcium Sodium Aluminosilicate from Eggshells Embedded in Polyurethane
Article
Licensed
Unlicensed Requires Authentication

Semi-Rigid Composite Foams of Calcium Sodium Aluminosilicate from Eggshells Embedded in Polyurethane

  • N. Tangboriboon , L. Mulsow , W. Sangwan and A. Sirivat
Published/Copyright: April 17, 2018
Become an author with De Gruyter Brill

Abstract

Calcium sodium aluminosilicate (CaNaAlSi2O7) ceramic powder was prepared from eggshells as a raw material via the sol-gel process at room temperature. The CaNaAlSi2O7 ceramic particles were embedded as a dispersed phase in the polyurethane (PU) foam matrix via a direct foaming process. The calcium sodium aluminosilicate (CaNaAlSi2O7) ceramic powder had a high specific surface area of 38.89 m2 g−1, and a fine average particle size of 13.27 μm, whereas the PU foam had a low specific surface area of 1.00 m2 g−1, and of light weight. After adding 10 vol% CaNaAlSi2O7 to the PU, the composite foams possessed a high specific surface area of 6.0 m2 g−1, a bulk density of 0.213 ± 0.012 g cm−3, a high decomposition temperature of 790 °C, and a high compressive Young's modulus of 346.0 ± 76.5 kPa. The CaNaAlSi2O7/PU composite foams provided good thermal conductivity, uniform pore size and particle size distribution, good bridge bonding, and with microcellular interconnecting cells. The CaNaAlSi2O7/ PU semi-rigid composite foams are potential candidate materials for a variety of products such as construction materials, catalysts, insulation materials, and adsorbent materials. There are several advantages of the semi-rigid composite foams: light weight, high specific surface area, and high thermal decomposition temperature.


*Correspondence address, Mail address: Anuvat Sirivat, Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand, E-mail:

References

Adeyeye, E. I., “Comparative Study on the Characteristics of Egg Shells of Some Bird Species”, Bull. Chem. Soc. Ethiop., 23, 15966 (2009) 10.4314/bcse.v23i2.44957Search in Google Scholar

Barrère, M., Landfester, K., “High Molecular Weight Polyurethane and Polymer Hybrid Particles in Aqueous Miniemulsion”, Macromolecules, 36, 51195125 (2003) 10.1021/ma025981Search in Google Scholar

Board, R. G., Love, G.Magnesium Distribution in Avian Eggshells”, Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 66, 667672 (1980) 10.1016/0300-9629(80)90015-8Search in Google Scholar

CallisterW. D.: Materials Science and Engineering: An Introduction, 7th Edition, John Wiley & Sons, New York (2007)Search in Google Scholar

Cao, X., Lee, K., Widya, T. and Macosko, C. W., “Polyurethane/Clay Nanocomposites Foams: Processing, Structure and Properties”, Polymer, 46, 775783 (2005) 10.1016/j.polymer.2004.11.028Search in Google Scholar

Chou, K.-S., Song, M.-A.A Novel Method for Making Open-Cell Aluminum Foams with Soft Ceramic Balls”, Scripta Materialia, 46, 379382 (2002) 10.1016/S1359-6462(01)01255-6Search in Google Scholar

Corcuera, M. A., Rueda, L., Fernandez, D., Arlas, B., Arbelaiz, A., Marieta, C. and Mondragon, I., “Microstructure and Properties of Polyurethanes Derived from Castor Oil”, Polym. Degrad. Stab., 95, 21752184 (2010) 10.1016/j.polymdegradstab.2010.03.001Search in Google Scholar

Dhara, S., Bhargava, P., “A Simple Direct Casting Route to Ceramic Foams”. J. Am. Ceram. Soc., 86, 16451650 (2003) 10.1111/j.1151-2916.2003.tb03534.xSearch in Google Scholar

Dias, C. J., Das-Gupta, D. K., “Inorganic Ceramic/Polymer Ferroelectric Composite Electrets”, IEEE Trans. Dielect. Electr. Insul.,.3, 706734 (1996) 10.1109/94.544188Search in Google Scholar

Donate-Robles, J., Martín-Martínez, J. M., “Addition of Precipitated Calcium Carbonate Filler to Thermoplastic Polyurethane Adhesives”, Int. J. Ashes. Adhes., 31, 795804 (2011) 10.1016/j.ijadhadh.2011.07.008Search in Google Scholar

Kabir, M. E., Saha, M. C. and Jeelani, S., “Tensile and Fracture Behavior of Polymer Foams”, Mater. Sci. Eng., A, 429, 225235 (2006) 10.1016/j.msea.2006.05.133Search in Google Scholar

Karoui, R. K., Kemps, B. D., Bamelis, F. and Mertens, K.: Eggs and Egg Products, Infrared Spectroscopy for Food Quality Analytical and Control, SunD.-W. (Ed.), MacMillan, USA, p. 399414, (2009) 10.1016/B978-0-12-374136-3.00015-8Search in Google Scholar

Kim, H., Lee, S., Han, Y. and Park, J., “Preparation of Dip-Coated Tio2 Photocatalyst on Ceramic Foam Pellets”, J. Mater. Sci., 41, 61506153 (2006) 10.1007/s10853–006–0574-xSearch in Google Scholar

Kim, J. W., Kim, D. J., Han, J. U., Kang, M., Kim, J. M. and Yie, J. E., “Preparation and Characterization of Zeolite Catalysts for Etherification Reaction”, Catal. Today, 87, 195203 (2003) 10.1016/j.cattod.2003.10.006Search in Google Scholar

Lee, L. J., Zeng, C., Cao, X., Han, X., Shen, J. and Xu, G., “Polymer Nanocomposite Foams”, Compos. Sci. Technol., 65, 23442363 (2005) 10.1016/j.compscitech.2005.06.016Search in Google Scholar

Lyckfeldt, O., Ferreira, J. M. F., “Processing of Porous Ceramics by Starch Consolidation”, J. Eur. Ceram. Soc., 18, 131140 (1998) 10.1016/S0955–2219(97)00101–5Search in Google Scholar

Madaleno, L., Pyrz, R., Crosky, A., Jensen, L. R., Rauhe, J. C. M., Dolomanova, V., Timmons, A. M. M. V. B., Pinto, J. J. C. and Norman, J., “Processing and Characterization of Polyurethane Nanocomposite Foam Reinforced with Montmorillonite-Carbon Nanotube Hybrids”, Composites Part A, 44, 17 (2013) 10.1016/j.compositesa.2012.08.015Search in Google Scholar

Mondal, P., Khakhar, D. V., “Rigid Polyurethane-Clay Nanocomposite Foams: Preparation and Properties”, J. Polym. Sci., 103, 28022809 (2007) 10.1002/app.24507Search in Google Scholar

NarinS. S., KongX., BouzidiL. and SpornsP., “Physical Properties of Polyurethanes Produced from Polyols from Seed Oil: II Foams”, J. Am. Oil Chem. Soc., 84, 6572 (2007) 10.1007/s11746-006-1008-2Search in Google Scholar

Nurfatmah, N., Pauzi, P. N., Majid, R. A., Dzulkifli, M. H. and Yahya, M. Y., “Development of Rigid Bio-Based Polyurethane Foam Reinforced with Nanoclay”, Composites Part B, 67, 521526 (2014) 10.1016/j.compositesb.2014.08.004Search in Google Scholar

Nys, Y., Gautron, J., Garcia-Ruiz, J. M. and Hincke, M. T., “Avian Eggshell Mineralization: Biochemical and Functional Characterization of Matrix Proteins”, C. R. Palevol., 3, 549562 (2004) 10.1016/j.crpv.2004.08.002Search in Google Scholar

Parthasarathy, M., Klingenberg, D. J., “Electrorheology: Mechanisms and Models”, Mater. Sci. Eng., R, 17, 57103 (1996)10.1016/0927-796X(96)00191-XSearch in Google Scholar

PengH. X., FanZ., Evans, J. R. G. and Busfield, J. J. C., “Microstructure of Ceramic Foams”, J. Eur. Ceram. Soc., 20, 807813 (2000) 10.1016/S0955-2219(99)00229-0Search in Google Scholar

Piszczyk, L., Strankowski, M., Danowska, M., Haponiuk, J. T. and Gazda, M., “Preparation and Characterization of Rigid Polyurethane-Polyglycerol Nanocomposite Foams”, Eur. Polym. J., 48, 17261733 (2012) 10.1016/j.eurpolymj.2012.07.001Search in Google Scholar

Richardson, J. T., Peng, Y. and Remue, D., “Properties of Ceramic Foam Catalyst Supports: Pressure Drop”, Appl. Catal. A, 204, 1932 (2000) 10.1016/S0926-860X(00)00508-1Search in Google Scholar

Saint-Michel, F., Chazeau, L. and Cavaillé, J.-Y., “Mechanical Properties of High Density Polyurethane Foams: II Effect of the Filler Size”, Compos. Sci. Technol., 66, 27092718 (2006) 10.1016/j.compscitech.2006.03.008Search in Google Scholar

Tangboriboon, N., Wongkasemjit, S., Kunanuruksapong, R. and SirivatA., “An Innovative Synthesis of Calcium Zeolite Type A Catalysts From Eggshells via the Sol-Gel Process”, J. Inorg. Organomet. Polym. Mater., 21, 5060 (2011) 10.1007/s10904-010-9413-2Search in Google Scholar

Toro, P., Quijada, R., Yazdani-Pedram, M. and Arias, J. L., “Eggshell, a New Bio-Filler for Polypropylene Composites”, Mater. Lett., 61, 43474350 (2007) 10.1016/j.matlet.2007.01.102Search in Google Scholar

Tsai, W. T., Yang, J. M., Lai, C. W., Cheng, Y. H., Lin, C. C. and Yeh, C. W., “Characterization and Adsorption Properties of Eggshells and Eggshell Membrane”, Bioresour. Technol., 97, 488493 (2006) 15896954 10.1016/j.biortech.2005.02.050Search in Google Scholar

Tullett, S. G., “The Porosity of Avian Eggshells”, Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 78, 513 (1984) 10.1016/0300-9629(84)90083-5Search in Google Scholar

Twigg, M. V., Richardson, J. T., “Theory and Applications of Ceramic Foam Catalysts”, Chem. Eng. Res. Des., 80, 183189 (2002) 10.1205/026387602753501906Search in Google Scholar

Valtchev, V., Mintova, S. and Tsapatsis, M., “Chapter 28 Ordered Porous Solids”, in Recent Advances and Prospects, Elsevier, San Diego, CA, USA (2008)Search in Google Scholar

Virta, R. L., “U.S. Zeolites”, Geological Survey Minerals Yearbook, USGS, Washington, DC, USA (2004)Search in Google Scholar

Widya, T., Macosko, C. W., “Nanoclay-Modified Rigid Polyurethane Foam”, J. Macromol. Sci. Par B Phys., 44, 897908 (2005)10.1080/00222340500364809Search in Google Scholar

Witkiewicz, W., Zieliński, A., “Properties of the Polyurethane (PU) Light Foams”, Adv. Mater. Res., 6, 3551 (2006)Search in Google Scholar

Xia, W., Chang, J., “Preparation and the Phase Transformation Behavior of Amorphous Mesoporous Calcium Silicate”, Microporous Mesoporous Mater., 108, 345351 (2008) 10.1016/j.micromeso.2007.04.013Search in Google Scholar

Xu, H., Guan, J., Wu, S. and Kan, Q., “Synthesis of Beta/MCM-41 Composite Molecular Sieve with High Hydrothermal Stability in Static and Stirred Condition”, J. Colloid Interface Sci., 329, 346350 (2009) 18951553 10.1016/j.jcis.2008.10.002Search in Google Scholar PubMed

Received: 2016-01-20
Accepted: 2017-06-18
Published Online: 2018-04-17
Published in Print: 2018-03-02

© 2018, Carl Hanser Verlag, Munich

Articles in the same Issue

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Semi-Rigid Composite Foams of Calcium Sodium Aluminosilicate from Eggshells Embedded in Polyurethane
  5. Effect of Spin-Draw Rate and Stretching Ratio on Polypropylene Hollow Fiber Membrane Made by Melt-Spinning and Stretching Method
  6. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics
  7. Photo-Degradation of Polypropylene-Ascorbic Acid TiO2 Composite Films
  8. Melt Flow and Flexural Properties of Polypropylene Composites Reinforced with Graphene Nano-Platelets
  9. Effect of the Addition of ENR on Foam Properties of EVA/NR/Clay Nanocomposites
  10. Development of High Pressure Injection Technology for Normal Hydraulic Injection Molding Machines
  11. Influence of Electron Induced Reactive Processing and Secondary Rubber Phase on Spinnability of Polypropylene and Polypropylene/Rubber Blends
  12. Monitoring of Injection Molding Tool Corrosion and Effects of Wood Plastic Compound's Moisture on Material Properties
  13. Simulation of Micropelletization Mechanisms in Polymer Melt – Air Systems
  14. Cross-Linked Hydrophobic Starch Granules in Blends with PLA
  15. Numerical Predictions of Fiber Orientation for Injection Molded Rectangle Plate and Tensile Bar with Experimental Validations
  16. Fabrication of Polyethylene Terephthalate Microfluidic Chip Using CO2 Laser System
  17. Minimization of Warpage for Injection Molded Parts by Inverse Thermal Mold Design
  18. Influence of Titanium Dioxide Modified Expandable Graphite and Ammonium Polyphosphate on Combustion Behavior and Physicomechanical Properties of Rigid Polyurethane Foam
  19. Preparation, Foaming and Characterization of Poly(l-lactic acid))/Poly(d-lactic acid)-Grafted Graphite Oxide Blends
  20. A Simple Method of Fabricating Graphene-Polymer Conductive Films
  21. PPS News
  22. PPS News
  23. Seikei Kakou Abstracts
  24. Seikei-Kakou Abstracts
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.3251/html?lang=en
Scroll to top button