High Shear Processing of (PP/EPR)/Silica Nanocomposites: Improvement of Morphology and Properties
-
M. Louizi
, V. Massardier , F. Mélis , P. Alcouffe und P. Cassagnau
Abstract
The aim of this article is to upgrade the performance of polypropylene/ethylene propylene rubber (PP/EPR) blends by addition of hydrophobic nanosilica (SiR805) and using “high shear processing technology”. The morphological developments, mechanical and rheological properties of these composites were investigated as a function of processing conditions. High shear processing has proved to be an efficient process to decrease the size of the dispersed phase (EPR) up to 300 nm and to disperse finely nanosilica particles to less than 30 nm especially at 800 min−1. Moreover, the morphology stability of the nanocomposite is ascribed to the formation of a core shell structure (EPR nodules = core; nano-silica = shell) and selective location of nanosilica at the interface. More importantly, this core-shell structure is favoured to enhance the impact strength of the (PP/EPR)/3 wt% SiR805 nanocomposite. In agreement to the obtained morphology, the improvement (about 60 %) of elongation at break attests a good adhesion between phases due to high shear effect as highlighted by viscoelastic properties. Therefore, high shear processing technology has proved to be a relevant method to prepare nanocomposites with high performances without adding any additive and offers new perspectives for recycling and lightening structures.
References
Aral, B. K., Kalyon, D. M., “Viscoelastic Material Functions of Noncolloidal Suspensions with Spherical Particles”, J. Rheology, 41, (3), 599–620 (1997) DOI: http://dx.doi.org/10.1122/1.550841Suche in Google Scholar
Avril, F., Rahmé, R., Doux, M., Verchere, D., Sage, D. and Cassagnau, P., “New Polymer Materials for Steel/Polymer/Steel Laminates in Automotive Applications”, Macromol. Mater. Eng., 298, 644–652 (2013) DOI: http://dx.doi.org/10.1002/mame.201200058Suche in Google Scholar
Bhadane, P. A., Tsou, A. H., Cheng, J. and Favis, B. D., “Morphology Development and Interfacial Erosion in Reactive Polymer Blending”, Macromolecules., 41, 7549–7559 (2008) DOI: http://dx.doi.org/10.1021/ma801390sSuche in Google Scholar
Boubimba, R. M., Bouquey, M., Muller, R., Jourdainne, L., Triki, B., Hébraud, P. and Pfeiffer, P., “Dispersion and Morphology of Polypropylene Nanocomposites: Characterization Based on a Compact and Flexible Optical Sensor”, Polym. Test., 31, 800–809 (2012) DOI: http://dx.doi.org/10.1016/j.polymertesting.2012.05.002Suche in Google Scholar
Cassagnau, P., “Payne Effect and Shear Elasticity of Silica-Filled Polymers in Concentrated Solutions and in Molten State”, Polymer, 44, 2455–2462 (2003) DOI: http://dx.doi.org/10.1016/S0032-3861(03)00094-6Suche in Google Scholar
Chang, S., Xie, T. and Yang, G., “Morphology and Mechanical Properties of High-Impact Polystyrene/Elastomer/Magnesium Hydroxide Composites”, J. Appl. Polym. Sci., 102, 5184–5190 (2006) DOI: http://dx.doi.org/10.1002/App.24720Suche in Google Scholar
Chen, C., Samaniuk, J., Baird, D. G., Devoux, G., Zhang, M., Moore, R. B. and Quigley, J. P., “The Preparation of Nano-Clay/Polypropylene Composite Materials with Improved Properties Using Supercritical Carbon Dioxide and a Sequential Mixing Technique”, Polymer, 53, 1373–1382 (2012) DOI: http://dx.doi.org/10.1016/j.polymer.2012.01.049Suche in Google Scholar
Chen, G., Li, Y. and Shimizu, H., “Ultrahigh-Shear Processing for the Preparation of Polymer/Carbon Nanotube Composites”, Carbon, 45, 2334–2340 (2007) DOI: http://dx.doi.org/10.1016/j.carbon.2007.07.017Suche in Google Scholar
Chen, J. H., Rong, M. Z., Ruan, W. H. and Zhang, M. Q., “Interfacial Enhancement of Nano-SIO2/Polypropylene Composites”, Compos. Sci. Technol., 69, 252–259 (2009) DOI: http://dx.doi.org/10.1016/j.compscitech.2008.10.013Suche in Google Scholar
Chen, X., Xu, J. and Guo, B. H., “Development of Dispersed Phase Size and its Dependence on Processing Parameters”, J. Appl. Polym. Sci., 102, 3201–3211 (2006) DOI: http://dx.doi.org/10.1002/app.24551Suche in Google Scholar
De Loor, A., Cassagnau, P., Michel, A. and Vergnes, B., “Development and Control of a Blend Morphology by In Situ Cross-Linking of the Dispersed Phase”, J. Appl. Polym. Sci., 53, 1675–1686 (1994) DOI: http://dx.doi.org/10.1002/app.1994.070531214Suche in Google Scholar
Dipti Kakkar, S., Maiti, N., “Effect of Flexibility of Ethylene Vinyl Acetate and Crystallization of Polypropylene on the Mechanical Properties of I-PP/EVA Blends”, J. Appl. Polym. Sci., 123, 1905–1912 (2012) DOI: http://dx.doi.org/10.1163/156855407780340359Suche in Google Scholar
Domenech, T., Peuvrel-Disdier, E. and Vergnes, B., “Influence of Twin Screw Processing Conditions on Structure and Properties of Polypropylene-Organoclay Nanocomposites”, Int. Polym. Proc., 27, 517–526 (2012), DOI: http://dx.doi.org/10.3139/217.2591Suche in Google Scholar
Elias, L., Fenouillot, F., Majeste, J. C. and Cassagnau, P., “Morphology and Rheology of Immiscible Polymer Blends Filled with Silica Nanoparticles”, Polymer, 48, 6029–6040 (2007) DOI: http://dx.doi.org/10.1016/j.polymer.2007.07.061Suche in Google Scholar
Fenouillot, F., Cassagnau, P. and Majesté, J. C., “Uneven Distribution of Nanoparticles in Immiscible Fluids: Morphology Development in Polymer Blends”, Polymer, 50, 1333–1350 (2009) DOI: http://dx.doi.org/10.1016/j.polymer.2008.12.029Suche in Google Scholar
Foudazi, R., Nazockdast, H., “Rheology and Morphology of Nanosilica-Containing Polypropylene and Polypropylene/Liquid Crystalline Polymer Blend”, J. Appl. Polym. Sci., 128, 3501–3511 (2013) DOI: http://dx.doi.org/10.1002/app.38269Suche in Google Scholar
Ghahri, S., Najafi, S. K., Mohebby, B. and Tajvidi, M., “Impact Strength Improvement of Wood Flour–Recycled Polypropylene Composites”, J. Appl. Polym. Sci., 124, 1074–1080 (2012) DOI: http://dx.doi.org/10.1002/app.34015Suche in Google Scholar
Graebling, D., Muller, R., Palierne, J. F., “Linear Viscoelastic Behavior of Some Incompatible Polymer Blends in the Melt. Interpretation of Data with a Model of Emulsion of Viscoelastic Liquids”, Macromolecules, 26, 320–329, (1993) DOI: http://dx.doi.org/10.1021/ma00054a011Suche in Google Scholar
Hejazi, I. F., Sharif, F. and Garmabi, H., “Effect of Material and Processing Parameters on Mechanical Properties of Polypropylene/Ethylene–Propylene–Diene–Monomer/Clay Nanocomposites”, Mater. Design, 32, 3803–3809 (2011) DOI: http://dx.doi.org/10.1016/j.matdes.2011.03.017Suche in Google Scholar
Jancar, J., Dibenedetto, A. T., “Effect of Morphology on the Behaviour of Ternary Composites of Polypropylene with Inorganic Fillers and Elastomer Inclusions”, J. Mater. Sci., 29, 1601–1608 (1995) DOI: http://dx.doi.org/10.1007/BF00375271Suche in Google Scholar
Jaziri, M., Mnif, N., Massardier, V. and Camby, H. P., “Rheological, Thermal and Morphological Properties of Blends Based on Poly(propylene), Ethylene Propylene Rubber and Ethylene-1-Octene Copolymer that Could Result from End of Life Vehicles (ELV). Effect of Maleic Anhydride Grafted Poly(propylene)”, J. Eng. Sci., 47, 1009–1015 (2007) DOI: http://dx.doi.org/10.1002/pen.20758Suche in Google Scholar
Jiang, W., Tjong, S. C. and Li, R. K. Y., “Brittle-Tough Transition in PP/EPDM Blends: Effects of Interparticle Distance and Tensile Deformation Speed”, Polymer, 41, 3479–3482 (2000) DOI: http://dx.doi.org/10.1016/S0032-3861(99)00747-8Suche in Google Scholar
Kalyon, D. M., Malik, M., “An Integrated Approach for Numerical Analysis of Coupled Flow and Heat Transfer in Co-Rotating Twin Screw Extruders”, Int. Polym. Proc., 22, 293–302 (2007)10.3139/217.1020Suche in Google Scholar
Kohlgruber, K.: Co-Rotating Twin-Screw Extruders: Fundamentals, Technology, and Applications, Hanser, Munich (2007) DOI: http://dx.doi.org/10.3139/9783446433410Suche in Google Scholar
Kontopoulou, M., Wang, W., Gopakumar, T. G. and Cheung, C., “Effect of Composition and Comonomer Type on the Rheology, Morphology and Properties of Ethylene-α-Olefin Copolymer/Polypropylene Blends”, Polymer, 44, 7495–7504 (2003) DOI: http://dx.doi.org/10.1016/j.polymer.2003.08.043Suche in Google Scholar
Lee, Y. J., Zloczower, I. M. and Feke, D. L., “Analysis of Titanium Dioxide Agglomerate Dispersion in Linear Low Density Polyethylene and Resulting Properties of Compounds”, Polym. Eng. Sci, 35, 1037–1045 (1995) DOI: http://dx.doi.org/10.1002/Pen.760351212Suche in Google Scholar
Lei, S. G., Hoa, S. V. and Ton-That, M. T., “Effect of Clay Types on the Processing and Properties of Polypropylene Nanocomposites”, Compos. Sci. Technol., 66, 1274–1249 (2006) DOI: http://dx.doi.org/10.1016/j.compscitech.2005.09.012Suche in Google Scholar
Lertwimolnun, W., Vergnes, B., “Influence of Compatibilizer and Processing Conditions on the Dispersion of Nanoclay in a Polypropylene Matrix”, Polymer, 46, 3462–3471 (2005) DOI: http://dx.doi.org/10.1016/j.polymer.2005.02.018Suche in Google Scholar
Li, Y., Shimizu, H., “Fabrication of Nanostructured Polycarbonate/Poly(methyl methacrylate) Blends with Improved Optical and Mechanical Properties by High-Shear Processing”, Polym. Eng. Sci., 51, 1437–1445 (2011) DOI: http://dx.doi.org/10.1002/pen.21879Suche in Google Scholar
Li, Y., Shimizu, H., “High-Shear Processing Induced Homogenous Dispersion of Pristine Multiwalled Carbon Nanotubes in a Thermoplastic Elastomer”, Polymer, 48, 2203–2207 (2007). DOI: http://dx.doi.org/10.1016/j.polymer.2007.02.066Suche in Google Scholar
Li, Y., Shimizu, H., “Morphological Investigations on the Nanostructured Poly(vinylidene fluoride)/Polyamide 11 Blends by High-Shear Processing”, Europ. Polym. J., 42, 3202–3211 (2006) DOI: http://dx.doi.org/10.1016/j.eurpolymj.2006.08.014Suche in Google Scholar
Li, Y., Shimizu, H., “Toward a Stretchable, Elastic, and Electrically Conductive Nanocomposite: Morphology and Properties of Poly[styrene-b-(ethylene-co-butylene)-b-styrene]/Multiwalled Carbon Nanotube Composites Fabricated by High-Shear Processing”, Macromolecules, 42, 2587–2593 (2009) DOI: http://dx.doi.org/10.1021/ma802662cSuche in Google Scholar
Lipatov, Y. S., Alekseeva, T. T., Rosovitsky, V. F. and Babkina, N. V., “Filled interpenetrating Networks: Their Formation and Viscoelastic Properties” Polym. Int., 37, 97–104 (1995) DOI: http://dx.doi.org/10.1002/pi.1995.210370203Suche in Google Scholar
Liu, Z., Gilbert, M. J., “Structure and Properties of Ttalc-Filled Polypropylene: Effect of Phosphate Coating”, J. Appl. Polym. Sci, 59, 1087–1098 (1996) DOI: http://dx.doi.org/10.1002/(SICI)1097-4628(19960214)59:7<1087::AID-APP5>3.0.CO;2-ASuche in Google Scholar
Long, Y., Shanks, R. A., “PP–Elastomer–Filler Hybrids. I. Processing, Microstructure, and Mechanical Properties”, J. Appl. Polym. Sci, 61, 1877 (1996) DOI: http://dx.doi.org/10.1002/(SICI)1097-4628(19960912)61:11<1877::AID-APP3>3.0.CO;2-GSuche in Google Scholar
Luyt, A. S., Mollefi, J. A. and Krump, H., “Thermal, Mechanical and Electrical Properties of Copper Powder Filled Low-Density and Linear Low-Density Polyethylene Composites”, Polym. Deg. Stab., 91, 1629–1636 (2006) DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2005.09.014Suche in Google Scholar
Mansour, S. H., Abd-El-Messieh, S. L., “Electrical and Mechanical Properties of some Polymeric Composites”, J. Appl. Polym. Sci., 83, 1167–1180 (2002) DOI: http://dx.doi.org/10.1002/app.2283Suche in Google Scholar
McNally, T., McShane, P., Nally, G. M., Murphy, W. R., Cook, M. and Miller, A., “Rheology, Phase Morphology, Mechanical, Impact and Thermal Properties of Polypropylene/Metallocene Catalysed Ethylene 1-Octene Copolymer Blends”, Polymer, 43, 3785–3793 (2002) DOI: http://dx.doi.org/10.1016/S0032-3861(02)00170-2Suche in Google Scholar
Mnif, N., Massardier, V. and Jaziri, M., “Influence of an Ethylene-Octene Copolymer and of Pollutants in (PP/EPR) Blends”, J. Appl. Polym. Sci., 104, 3220–3227 (2007) DOI: http://dx.doi.org/10.1002/app.25946Suche in Google Scholar
Moan, M., Huitric, J. and Médéric, P., “Rheological Properties and Reactive Compatibilization of Immiscible Polymer Blends”, J. Rheol., 44, 1227–1246 (2000) DOI: http://dx.doi.org/10.1122/1.1289281Suche in Google Scholar
Muller, R., Palierne, J. F., “Linear Viscoelastic Behavior of some Incompatible Polymer Blends in the Melt. Interpretation of Data with a Model of Emulsion of Viscoelastic Liquids”, Macromolecules, 26, 320–329 (1993) DOI: http://dx.doi.org/10.1021/ma00054a011Suche in Google Scholar
Paul, D. R., Robeson, L. M., “Polymer Nanotechnology: Nanocomposites”, Polymer, 49, 3187–3204 (2008) DOI: http://dx.doi.org/10.1016/j.polymer.2008.04.017Suche in Google Scholar
Ray, S. S., Bandyopadhyay, J. and Bousmina, M., “Effect of Organoclay on the Morphology and Properties of Poly(propylene)/Poly[(butylene succinate)-co-adipate] Blends”, Macromol. Mater. Eng., 292, 729–747 (2007) DOI: http://dx.doi.org/10.1002/mame.200700029Suche in Google Scholar
Sailer, C., Handge, U. A., “Melt Viscosity, Elasticity, and Morphology of Reactively Compatibilized Polyamide 6/Styrene-Acrylonitrile Blends in Shear and Elongation”, Macromolecules, 40, 2019–2028 (2007) DOI: http://dx.doi.org/10.1021/ma062705cSuche in Google Scholar
Sailer, C., Weber, M., Steininger, H. and Handge, U. A., “Grafting of Polyamide 6 on a Styrene–Acrylonitrile Maleic Anhydride Terpolymer: Melt Rheology at the Critical Gel State”, Rheol. Acta, 48, 579–588 (2009), DOI: http://dx.doi.org/10.1007/s00397-009-0359-7Suche in Google Scholar
Silva, A. L. N., Rocha, M. C. G., Moraes, M. A. R., Valente, C. A. R. and Coutinho, F. M. B., “Mechanical and Rheological Properties of Composites Based on Polyolefin and Mineral Additives”, Polym. Test, 21, 57–60 (2002) DOI: http://dx.doi.org/10.1016/S0142-9418(01)00047-2Suche in Google Scholar
Tang, H., Kalyon, D. M., “Time-Dependent Tube Flow of Compressible Suspensions Subject to Pressure Dependent Wall Slip: Ramifications on Development of Flow Instabilities”, J. Rheol., 52, 1069–1090 (2008) DOI: http://dx.doi.org/10.1122/1.2955508Suche in Google Scholar
Tang, H., Kalyon, D. M., “Unsteady Circular Tube Flow of Compressible Polymeric Liquids Subject to Pressure-Dependent Wall Slip”, J. Rheol., 52, 507–526 (2008) DOI: http://dx.doi.org/10.1122/1.2837104Suche in Google Scholar
Teyssandier, F., Cassagnau, P., Gérard, J. F., Mignard, N. and Mélis, F., “Morphology and Mechanical Properties of PA12/Plasticized Starch Blends Prepared by High-Shear Extrusion”, Mater. Chem. Phys., 133, 913–923 (2012) DOI: http://dx.doi.org/10.1016/j.matchemphys.2012.01.117Suche in Google Scholar
Thio, Y. S., Argon, A. S., Cohen, R. E. and Weinberg, M., “Toughening of Isotactic Polypropylene with CaCO3Particles”, Polymer, 43, 3661–3674 (2002) DOI: http://dx.doi.org/10.1016/S0032-3861(02)00193-3Suche in Google Scholar
Utracki, L. A., “Interphase between Nanoparticles and Molten Polymeric Matrix: Pressure–Volume–Temperature Measurements,” Compos. Interfaces, 14, 229–242 (2006) DOI: http://dx.doi.org/10.1163/156855407780340359Suche in Google Scholar
Valerio, C., Carla, M., Antonio, M., Giuseppe, F., Angelo, F. and Roberta, S., “Structure-Property Relationships in Isotactic Poly(propylene)/Ethylene Propylene Rubber/Montmorillonite Nanocomposites”, Nanosci. Nanotechnol., 8, 1823–1834 (2008) DOI: http://dx.doi.org/10.1166/jnn.2008.0031823Suche in Google Scholar PubMed
Vergnes, B., Della Valle, G. and Delamare, L., “A Global Computer Software for Polymer Flows in Corotating Twin Screw Extruders”, Polym. Eng. Sci., 38, 1781–1792 (1998) DOI: http://dx.doi.org/10.1002/pen.10348Suche in Google Scholar
Wang, Y., Wang, J. J., “Shear Yield Behavior of Calcium Carbonate–Filled Polypropylene”, Polym. Eng. Sci., 39, 190–198 (1999) DOI: http://dx.doi.org/10.1002/pen.11407Suche in Google Scholar
Yang, H., Zhang, Q., Guo, M., Wang, C., Du, R. and Fu, Q., “Study on the Phase Structures and toughening Mechanism in PP/EPDM/SiO2 Ternary Composites”, Polymer, 47, 2106–2115 (2006) DOI: http://dx.doi.org/10.1016/j.polymer.2006.01.076Suche in Google Scholar
Yong, H., Zhang, X. Q., Qu, C., Li, B., Zhang, L., Zhang, Q. and Fu, Q., “Largely Improved Toughness of PP/EPDM Blends by Adding Nano-SiO2 Particles”, Polymer, 48, 860–869 (2007) DOI: http://dx.doi.org/10.1016/j.polymer.2006.12.022Suche in Google Scholar
Zebarjad, S. M., Tahani, M. and Sajjadi, S. A., “Influence of Filler Particles on Deformation and Fracture Mechanism of Isotactic Polypropylene”, J. Mater. Process. Technol., 155–156, 1459–146 (2004) DOI: http://dx.doi.org/10.1016/j.jmatprotec.2004.04.187Suche in Google Scholar
Zhou, T. H., Ruan, W. H., Mai, Y. L., Rong, M. Z. and Zhang, M. Q., “Performance Improvement of Nano-Silica/Polypropylene Composites through In-Situ Cross-Linking Approach”, Compos. Sci. Technol., 68, 2858–2863 (2008) DOI: http://dx.doi.org/10.1016/j.compscitech.2007.10.002Suche in Google Scholar
Zhou, Y., Rangari, V., Mahfuz, H., Jeelani, S. and Mallick, P. K., “Experimental Study on Thermal and Mechanical Behavior of Polypropylene, Talc/Polypropylene and Polypropylene/Clay Nanocomposites”, Mater. Sci. Eng. A, 402, 109–117 (2005) DOI: http://dx.doi.org/10.1016/j.msea.2005.04.014Suche in Google Scholar
Zhu, S., Chen, J., Zuo, Y., Li, H. and Cao, Y., “Montmorillonite/Polypropylene Nanocomposites: Mechanical Properties, Crystallization and Rheological Behaviors”, Appl. Clay. Sci., 52, 171–178 (2011) DOI: http://dx.doi.org/10.1016/j.clay.2011.02.021Suche in Google Scholar
© 2014, Carl Hanser Verlag, Munich
Artikel in diesem Heft
- Contents
- Contents
- Invited Articles
- The Effect of Molecular Parameters on the Thermal Behavior of Recycled and Virgin Polyamides and Their Glass Fiber Composites
- Carbon Nanotube Conductive Networks through the Double Percolation Concept in Polymer Systems
- Application of the Experimental Results to the Modified Halpin-Tsai Micromechanical Model to Evaluate the Clay Dispersion in Clay-Reinforced Polyethylene Nanocomposites
- Influence of Solvent Washing and Soxhlet Extraction on the Thermal Stability of Organically Modified Layered Silicates
- Effect of Screw Rotation Speed on the Properties of Polycarbonate/Vapor-Grown Carbon Fiber Composites Prepared by Melt Compounding
- Simulation of Co-Rotating Twin Screw Extrusion Process Subject to Pressure-Dependent Wall Slip at Barrel and Screw Surfaces: 3D FEM Analysis for Combinations of Forward- and Reverse-Conveying Screw Elements
- Preparation of Polymer-Clay Nanocomposites by Melt Mixing in a Twin Screw Extruder: Using On-Line SAOS Rheometry to Assess the Level of Dispersion
- Residence Time Distribution in a High Shear Twin Screw Extruder
- PVDF/Carbonnanotubes/Nanoclay Composites for Piezoelectric Applications
- Viscoelastic and Electrical Properties of Carbon Nanotubes Filled Poly(butylene succinate)
- Sealability and Seal Characteristics of PE/EVA and PLA/PCL Blends
- Effects of Polymer Viscosity and Nanofillers on Morphology of Nanofibers Obtained by a Gas Jet Method
- Modeling of the Torque Requirements for the Mixing and Dispersion of Silica into Rubber
- High Shear Processing of (PP/EPR)/Silica Nanocomposites: Improvement of Morphology and Properties
- An Overview of Molten Polymer Drawing Instabilities
- PPS News
- PPS News
- Seikei-Kakou Abstracts
- Seikei-Kakou Abstracts
Artikel in diesem Heft
- Contents
- Contents
- Invited Articles
- The Effect of Molecular Parameters on the Thermal Behavior of Recycled and Virgin Polyamides and Their Glass Fiber Composites
- Carbon Nanotube Conductive Networks through the Double Percolation Concept in Polymer Systems
- Application of the Experimental Results to the Modified Halpin-Tsai Micromechanical Model to Evaluate the Clay Dispersion in Clay-Reinforced Polyethylene Nanocomposites
- Influence of Solvent Washing and Soxhlet Extraction on the Thermal Stability of Organically Modified Layered Silicates
- Effect of Screw Rotation Speed on the Properties of Polycarbonate/Vapor-Grown Carbon Fiber Composites Prepared by Melt Compounding
- Simulation of Co-Rotating Twin Screw Extrusion Process Subject to Pressure-Dependent Wall Slip at Barrel and Screw Surfaces: 3D FEM Analysis for Combinations of Forward- and Reverse-Conveying Screw Elements
- Preparation of Polymer-Clay Nanocomposites by Melt Mixing in a Twin Screw Extruder: Using On-Line SAOS Rheometry to Assess the Level of Dispersion
- Residence Time Distribution in a High Shear Twin Screw Extruder
- PVDF/Carbonnanotubes/Nanoclay Composites for Piezoelectric Applications
- Viscoelastic and Electrical Properties of Carbon Nanotubes Filled Poly(butylene succinate)
- Sealability and Seal Characteristics of PE/EVA and PLA/PCL Blends
- Effects of Polymer Viscosity and Nanofillers on Morphology of Nanofibers Obtained by a Gas Jet Method
- Modeling of the Torque Requirements for the Mixing and Dispersion of Silica into Rubber
- High Shear Processing of (PP/EPR)/Silica Nanocomposites: Improvement of Morphology and Properties
- An Overview of Molten Polymer Drawing Instabilities
- PPS News
- PPS News
- Seikei-Kakou Abstracts
- Seikei-Kakou Abstracts