Startseite Carbon Nanotube Conductive Networks through the Double Percolation Concept in Polymer Systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Carbon Nanotube Conductive Networks through the Double Percolation Concept in Polymer Systems

  • S. Abbasi , A. Derdouri und P. J. Carreau
Veröffentlicht/Copyright: 1. März 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We investigated the electrical conductivity and percolation behavior of binary and ternary nanocomposites based on multiwalled carbon nanotubes (MWCNs) using polypropylene (PP) and a blend of PP with cyclic butylene terephthalate (CBT). The nanocomposites were prepared by diluting a commercial 20 %wtMWCNT PP masterbatch using optimized melt-mixing conditions. The concentration of carbon nanotubes in the diluted PP samples was as low as 0.5 % and as high as 15 % in weight. For the PP/CBT blend CBT concentration was varied up to 40 %wt while the loading of CNT was from 0 to 5 %wt. SEM and TEM techniques were used to examine the quality of the dispersion and the formation of nanotube networks within the polymer matrix. TEM and Raman spectroscopy results showed that for the diluted PP/MWCNT composites the nanotubes are well aligned in samples obtained the microinjection molding process, although the level of alignment is less with crystalline PP than in an amorphous matrix such as polycarbonate (PC). FTIR and XRD results revealed that the orientation of both polymer chains and crystals decreased with the incorporation of nanotubes into PP. The electrical conductivity was also significantly altered by the nanotube alignment in a PP matrix, as was previously observed for PC/MWCNT composites; the conductivity decreased and the percolation threshold rose in highly sheared samples; however, the presence of a crystalline phase improved the conductivity even for high shear conditions through the phenomenon of double percolation threshold. This last concept refers to the requirement that the filler-rich phase be continuous and conductive and not to the existence of two percolation thresholds at two different CNT concentrations. The electrical conductivity of PP/CBT blends was also improved through a double percolation that is the basic requirement for the conductivity of the ternary nanocomposites.


* Mail address: Pierre J. Carreau, Department of Chemical Engineering, Ecole Polytechnique, Montreal, QC, Canada E-mail:

References

Abbasi, S., Carreau, P. J., Derdouri, A. and Moan, M., “Rheological Properties and Percolation in Suspensions of Multiwalled Carbon Nanotubes in Polycarbonate”, Rheol. Acta., 48, 943959 (2009) DOI: http://dx.doi.org/10.1007/s00397-009-0375-7Suche in Google Scholar

Abbasi, S., Carreau, P. J. and Derdouri, A., “Flow Induced Orientation of Multiwalled Carbon Nanotubes in Polycarbonate Nanocomposites: Rheology, Conductivity and Mechanical Properties”, Polymer, 51, 922935 (2010) DOI: http://dx.doi.org/10.1016/j.polymer.2009.12.041Suche in Google Scholar

Abbasi, S., Derdouri, A. and Carreau, P. J., “Properties of Microinjection Molding of Polymer Multiwalled Carbon Nanotube Conducting Composites”, Polym. Eng. Sci.51, 9921003 (2011) DOI: http://dx.doi.org/10.1002/pen.21904Suche in Google Scholar

Al-Salah, M. H., Al-Anid, H. K. and Hussain, Y. A., “Electrical Double Percolation and Carbon Nanotubes Distribution in Solution Processed Immiscible Polymer Blend”, Synth. Met., 175, 7580 (2013) DOI: http://dx.doi.org/10.1016/j.synthmet.2013.05.004Suche in Google Scholar

Bhagat, N. A., Shrivastava, N. K., Suin, S., Maiti, S. and Khatua, B. B., “Development of Electrical Conductivity in PP/HDPE/MWCNT Nanocomposites by Melt Mixing at Very Low Loading of MWCNT”, Polym. Compos., 34, 787798 (2013) DOI: http://dx.doi.org/10.1002/pc22491Suche in Google Scholar

Breuer, O., Tchoudakov, R., Narkis, M. and Siegmann, A., “Shear Rate Effect on the Resistivity of HIPS/LLDPE/Carbon Black Extrudates”, Polym. Eng. Sci., 38, 18981905 (1998) DOI: http://dx.doi.org/10.1002/pen.10360Suche in Google Scholar

Bueche, F., “Electrical Resistivity of Conducting Particles in an Insulating Matrix”, J. Appl. Phys., 43, 48374838 (1972) DOI: http://dx.doi.org/10.1063/1.1661034Suche in Google Scholar

Bulusheva, L. G., Okotrub, A. V., Kinloch, I. A., Asanov, I. P., Kurenya, A. G., Kudashov, A. G., Cheng, X. and Song, H., “Effect of Nitrogen Doping on Raman Spectra of Multi-Walled Carbon Nanotubes”, Phys. Status Solidi B, 245, 19711974 (2008) DOI: http://dx.doi.org/10.1002/pssb.200879592Suche in Google Scholar

Cadek, M., Coleman, J. N., Barron, V., Hedicke, K. and Blau, W. J., “Morphological and Mechanical Properties of Carbon-Nanotube-Reinforced Semi-Crystalline and Amorphous Polymers”, Appl. Phys. Lett., 81, 51235125, (2002) DOI: http://dx.doi.org/10.1063/1.1533118Suche in Google Scholar

Chang, T. E., Jensen, L. R., Kisliuk, A., Pipes, R. B., Pyrz, R. and Sokolov, A. P., “Microscopic Mechanism of Reinforcement in Single-Wall Carbon Nanotube/Polypropylene Nanocomposite”, Polymer, 46, 439444 (2005) DOI: http://dx.doi.org/10.1016/J.Polymer.2004.11.030Suche in Google Scholar

Clarke, J., Clarke, B., Freakley, P. K. and Sutherland, I., “Compatibilising Effect of Carbon Black on Morphology of NR–NBR Blends”, Plast. Rub. Compos., 30, 3944 (2001) DOI: http://dx.doi.org/10.1179/146580101101541426Suche in Google Scholar

Dresselhaus, M. S., Dresselhaus, G. and Saito, R., “Physics of Carbon Nanotubes”, Carbon, 33, 883891 (1995) DOI: http://dx.doi.org/10.1016/0008-6223(95)00017-8Suche in Google Scholar

Du, F., Scogna, R. C., Zhou, W., Brand, S., Fischer, J. E. and Winey, K. I., “Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity”, Macromolecules, 37, 90489055 (2004) DOI: http://dx.doi.org/10.1021/ma049164gSuche in Google Scholar

Endo, M., Kim, Y. A., Fukai, Y., Hayachi, T., Terrones, M., Terrones, H. and Dresselhaus, M. S., “Comparison Study of Semi-Crystalline and Highly Crystalline Multiwalled Carbon Nanotubes”, Appl. Phys. Lett., 79, 15311533 (2001) DOI: http://dx.doi.org/10.1063/1.1400774Suche in Google Scholar

Fenouillot, F., Cassagnau, P. and Majesté, J.-C., “Uneven Distribution of Nanoparticles in Immiscible Fluids: Morphology Development in Polymer Blends”, Polymer, 50, 13331350 (2009) DOI: http://dx.doi.org/10.1016/j.polymer.2008.12.029Suche in Google Scholar

Fischer, D., Pötschke, P., Brüning, H. and Janke, A., “Investigation of the Orientation in Composite Fibers of Polycarbonate with Multiwalled Carbon Nanotubes by Raman Microscopy”, Macromol. Symp., 230, 167172 (2005) DOI: http://dx.doi.org/10.1002/masy.200551156Suche in Google Scholar

Göldel, A., Kasaliwal, G. and Pötschke, P., “Selective Localization and Migration of Multiwalled Nanotubes in Blends of Polycarbonate and Poly(styrene acrylonitrile)”, Macromolecular Rapid Com., 30, 423429 (2009) PMid:21706619; DOI: http://dx.doi.org/10.1002/marc.200800549Suche in Google Scholar

Göldel, A., Kasaliwal, G. R., Pötschke, P. and Heinrich, G., “The Kinetics of CNT transfer between Immiscible Blend Phases during Melt Mixing”, Polymer, 53, 411421 (2012) DOI: http://dx.doi.org/10.1016/j.polymer.2011.11.039Suche in Google Scholar

Gubbels, F., Jerome, R., Vanlathem, E., Deltour, R., Blacher, S. and Brouers, F., “Kinetic and Thermodynamic Control of the Selective Localization of Carbon Black at the Interface of Immiscible Polymer Blends”, Chem. Mater., 10, 12271235 (1998) DOI: http://dx.doi.org/10.1021/cm970594dSuche in Google Scholar

Hobbs, S. Y., Dekkers, M. E. J. and Watkins, V. H., “Effect of Interfacial Forces on Polymer Blend Morphologies”, Polymer, 29, 15981602 (1988) DOI: http://dx.doi.org/10.1016/0032-3861(88)90269-8Suche in Google Scholar

Hu, G., Zhao, C., Zhang, S., Yang, M. and Wang, Z., “Low Percolation Thresholds of Electrical Conductivity and Rheology in Poly(ethylene terephthalate) through the Networks of Multi-Walled Carbon Nanotubes”, Polymer, 47, 480488 (2006) DOI: http://dx.doi.org/10.1016/j.polymer.2005.11.028Suche in Google Scholar

Jeon, K., Lumata, L., Tokumoto, T., Steven, E., Brooks, J. and Alamo, R. G., “Low Electrical Conductivity Threshold and Crystalline Morphology of Single-Walled Carbon Nanotubes – High Density Polyethylene Nanocomposites Characterized by SEM, Raman Spectroscopy and AFM”, Polymer, 48, 47514764 (2007) DOI: http://dx.doi.org/10.1016/j.polymer.2007.05.078Suche in Google Scholar

Karásek, L., Sumita, M., “Characterization of Dispersion State of Filler and Polymer-Filler Interactions in Rubber-Carbon Black Composites”, J. Mater. Sci.31, 281289 (1996) DOI: http://dx.doi.org/10.1007/BF01139141Suche in Google Scholar

Kharchenko, S. B., Douglas, J. F., Obrzut, J., Grulke, E. A. and Migler, K. B., “Flow-Induced Properties Of Nanotube-Filled Polymer Materials”, Nature Mater., 3, 564568 (2004) PMid:15273745; DOI: http://dx.doi.org/10.1038/nmat1183Suche in Google Scholar PubMed

Khunová, V., Smatko, V., Hudek, I. and Beniska, J., “Influence of Filler on the Polypropylene Structure”, Progr. Colloid Polym. Sci., 78, 188191 (1988) DOI: http://dx.doi.org/10.1007/BFb0114372Suche in Google Scholar

Kieth, H. P., Padden, Jr.F. J., “Sherulitic crystallization from the Melt. I. Fractionation and Impurity Segregation and their Influence on Crystalline Morphology”, J. Appl. Phys., 35, 12701285, (1964) DOI: http://dx.doi.org/10.1063/1.1713606Suche in Google Scholar

Lee, G. W., Jagannathan, S., Chae, H. G., Minus, M. L. and Kumar, S., “Carbon Nanotube Dispersion and Exfoliation in Polypropylene and Structure and Properties of the Resulting Composites”, Polymer, 49, 18311840 (2008a) DOI: http://dx.doi.org/10.1016/j.polymer.2008.02.029Suche in Google Scholar

LeeS.H., Kim, M. W., Kim, S. H. and Youn, J. R., “Rheological and Electrical Properties of Polypropylene/MWCNT Composites Prepared with MWCNT Masterbatch Chips”, Euro. Polym. J., 44, 16201630 (2008b) DOI: http://dx.doi.org/10.1016/j.eurpolymj.2008.03.017Suche in Google Scholar

Lin, B., Sundararaj, U. and Pötschke, P., “Melt Mixing of Polycarbonate with Multi-Walled Carbon Nanotubes in Miniature Mixers”, Macromol. Mater. Eng., 291, 227238 (2006) DOI: http://dx.doi.org/10.1002/mame.200500335Suche in Google Scholar

Luongo, J. P., “Infrared Study of Polypropylene”, J. Appl. Polym. Sci., 3, 302309 (1960) DOI: http://dx.doi.org/10.1002/app.1960.070030907Suche in Google Scholar

Meincke, O., Kaempfer, D., Weickmann, H., Friedrich, H., Vathauer, M. and Warth, H., “Mechanical Properties and Electrical Conductivity of Carbon-Nanotube Filled Polyamide-6 and its Blends with Acrylonitrile/Butadiene/Styrene”, Polymer, 45, 739748 (2004) DOI: http://dx.doi.org/10.1016/j.polymer.2003.12.013Suche in Google Scholar

Meyyappan, M.: Carbon Nanotubes : Science And Applications, 1st Edition, CRC Press, Boca Raton (2005)Suche in Google Scholar

Mičušîk, M., Omastová, M., Krupa, I., Prokeš, J., Pissis, P., Logakis, E., Pandis, C., Pötschke, P. and Piontek, J., “A Comparative Study on the Electrical and Mechanical Behaviour of Multi-Walled Carbon Nanotube Composites Prepared by Diluting a Masterbatch with Various Types of Polypropylenes”, J. Appl. Polym. Sci., 113, 25362551 (2009) DOI: http://dx.doi.org/10.1002/app.30418Suche in Google Scholar

Moniruzzaman, M., WineyK.I., “Polymer Nanocomposites Containing Carbon Nanotubes”, Macromolecules, 39, 51945205 (2006) DOI: http://dx.doi.org/10.1021/ma060733pSuche in Google Scholar

Nielsen, L. E., Landel, R. F.: Mechanical Properties of Polymers and Composites, 2nd Edition, Marcel Dekker Publisher, New York (1993)Suche in Google Scholar

Nordmark, T. S., Ziegler, G., “Spherulitic Crystallization of Gelatinized Maize Starch ans its Fractions”, Carbohydrate Polym., 49, 439448 (2002) DOI: http://dx.doi.org/10.1016/S0144-8617(01)00353-8Suche in Google Scholar

Nuriel, S., Liu, L., Barber, A. H. and Wagner, H. D., “Direct Measurement of Multiwall Nanotube Surface Tension”, Chem. Phys. Lett.404, 263266 (2005) DOI: http://dx.doi.org/10.1016/j.cplett.2005.01.072Suche in Google Scholar

Oda, Y., Hata, T., Preprints, 267, Seventeenth Annual Meeting of the High Polymer Society of Japan (1968)Suche in Google Scholar

Owens, D. K., Wendt, R. C., “Estimation of the Surface Free Energy of Polymers”, J. Appl. Polym. Sci., 13, 17411747 (1969) DOI: http://dx.doi.org/10.1002/app.1969.070130815Suche in Google Scholar

Painter, P. C., Watzek, M. and Koenig, J. L., “Fourrier Transform Infra-Red Study of Polypropylene”, Polymer, 18, 11691172 (1977) DOI: http://dx.doi.org/10.1016/0032-3861(77)90114-8Suche in Google Scholar

Parthasarthy, G., Sevegney, M. and Kannan, R. M., “Rheooptical Fourier Transform Infrared Spectroscopy of the Deformation Behavior in Quenched and Slow-Cooled Isotactic Polypropylene Films”, J. Polym. Sci., Part B: Polym. Phys., 40, 25392551 (2002) DOI: http://dx.doi.org/10.1002/polb.10304Suche in Google Scholar

Pham, G. T., Park, Y.-B., Wang, S., Liang, Z., Wang, B., Zhang, C., Funchess, B. and Kramer, L., “Mechanical and Electrical Properties of Polycarbonate Nanotube Buckypaper Composite Sheets”, Nanotechnology, 19, 325705 (2008) PMid:21828827; DOI: http://dx.doi.org/10.1088/0957-4484/19/32/325705Suche in Google Scholar PubMed

Pötschke, P., Abdel-Goad, M., Alig, I., Dudkin, S., Lellinger, D., “Rheological and Dielectrical Characterization of Melt Mixed Polycarbonate-Multiwalled Carbon Nanotube Composites”, Polymer, 45, 88638870 (2004a) DOI: http://dx.doi.org/10.1016/j.polymer.2004.10.040Suche in Google Scholar

PötschkeP., Bhattacharyya, A. R. and Janke, R., “Carbon-Nanotube Filled Polycarbonate Composites Produced by Melt Mixing and their Use in Blends with Polyethylene”, Carbon, 42, 965969 (2004b) DOI: http://dx.doi.org/10.1016/j.carbon.2003.12.001Suche in Google Scholar

Pötschke, P., Fornes, T. D. and Paul, D. R., “Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites”, Polymer, 43, 32473255 (2002) DOI: http://dx.doi.org/10.1016/S0032-3861(02)00151-9Suche in Google Scholar

Pötschke, P., Kobashi, K., Villmow, T., Andres, T., Paiva, M. C. and Covas, J. A., “Liquid Sensing Properties of Melt Processed Polypropylene/Poly(∊-caprolactone) Blends Containing Multiwalled Carbon Nanotubes”, Compos. Sci. Technol., 71, 14511460 (2011) DOI: http://dx.doi.org/10.1016/j.compscitech.2011.05.019Suche in Google Scholar

Pötschke, P., Brüning, H., Janke, A., Fischer, D. and Jehnichen, D., “Orientation of Multiwalled Carbon Nanotubes In Composites with Polycarbonate by Melt Spinning”, Polymer, 46, 1035510363 (2005) DOI: http://dx.doi.org/10.1016/j.polymer.2005.07.106Suche in Google Scholar

Pötschke, P., Kretzschmar, B., and Janke, A., “Use of Carbon Nanotube Filled Polycarbonate in Blends with Monmorillonite Filled Polypropylene”, Compos. Sci. Technol., 67, 855860 (2007) DOI: http://dx.doi.org/10.1016/j.compscitech.2006.02.034Suche in Google Scholar

Sadeghi, F., Ajji, A. and Carreau, P. J., “Analysis of Microporous Membranes Obtained from Polypropylene Films by Stretching”, J. Membr. Sci., 292, 6271 (2007) DOI: http://dx.doi.org/10.1016/j.memsci.2007.01.023Suche in Google Scholar

Sandler, J. K. W., Kirk, J. E., Kinloch, I. A., Shaffer, M. S. P. and Windle, A. H., “Ultra-Low Electrical Percolation Threshold in Carbon-Nanotube-Epoxy Composites”, Polymer, 44, 58935899 (2003) DOI: http://dx.doi.org/10.1016/S0032-3861(03)00539-1Suche in Google Scholar

Sharples, A.: Introduction to Polymer Crystallization, 1st Edition, St. Martin's Press, New York (1966)Suche in Google Scholar

Sumita, M., Abe, H., Kayaki, H. and Miyasaka, K., “Effect of Melt Viscosity and Surface Tension of Polymers on the Percolation Threshold of Conductive-Particle-Filled Polymeric Composites”, J. Macromol. Sci., Part B, 25, 171184 (1986a) DOI: http://dx.doi.org/10.1080/00222348608248036Suche in Google Scholar

Sumita, M., Asai, S., Miyadera, N., Jojima, E. and Miyasaka, K., “Electrical Conductivity of Carbon Black Filled Ethylene-Vinyl Acetate Copolymer as a Function of Vinyl Acetate Content”, Colloid Polym. Sci., 264, 212217 (1986b) DOI: http://dx.doi.org/10.1007/BF01414955Suche in Google Scholar

Sumita, M., Sakata, K., Asai, S., Miyasaka, K. and Nakagawa, H., “Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled with Carbon Black”, Polymer Bulletin, 25, 265271 (1991) DOI: http://dx.doi.org/10.1007/BF00310802Suche in Google Scholar

Sumita, M., Sakata, K., Hayakawa, Y., Asai, S., Miyasaka, K. and Tanemura, M., “Double Percolation Effect on the Electrical Conductivity of Conductive Particles Filled Polymer Blends”, Colloid Polym. Sci.270, 134139 (1992) DOI: http://dx.doi.org/10.1007/BF00652179Suche in Google Scholar

Sung, Y. T., Han, M. S., Song, K. H., Jung, J. W., Lee, H. S., Kum, C. K., Joo, J. and Kim, W. N., “Rheological and Electrical Properties of Polycarbonate/Multi-Walled Carbon Nanotube Composites”, Polymer, 47, 44344439 (2006) DOI: http://dx.doi.org/10.1016/j.polymer.2006.04.008Suche in Google Scholar

Tchoudakov, R., Breuer, O., Narkis, M. and Siegmann, A., “Conductive Polymer Blends with Low Carbon Black Loading: High Impact Polystyrene/Thermoplastic Elastomer (Styrene-Isoprene-Styrene)”, Polym. Eng. Sci., 37, 19281935 (1997) DOI: http://dx.doi.org/10.1002/pen.11843Suche in Google Scholar

Tjong, S. C., Liang, G. D. and Bao, S. P., “Electrical Properties of Low Density Polyethylene/ZNO Nanocomposites: The Effect of Thermal Treatments”, J. Appl. Polym. Sci., 102, 14361444 (2006), DOI 10.1002/app.24294 DOI: http://dx.doi.org/10.1002/app.24294Suche in Google Scholar

Tjong, S. C., Liang, G. D. and Bao, S. P., “Effects of Crystallization on Dispersion of Carbon Nanofibers and Electrical Properties of Polymer Nanocomposites”, Polym. Eng. Sci., 48, 177183 (2008) DOI: http://dx.doi.org/10.1002/pen.20949Suche in Google Scholar

Ward, I. M., Coates, P. D. and Dumoulin, M. M., (Eds.): Solid Phase Processing of Polymers, Hanser, Munich (2000) DOI: http://dx.doi.org/10.3139/9783446401846Suche in Google Scholar

Wu, M., Shaw, L., “Electrical and Mechanical Behaviors of Carbon Nanotube-Filled Polymer Blends”, J. Appl. Polym. Sci., 99, 477488 (2006) DOI: http://dx.doi.org/10.1002/app.22255Suche in Google Scholar

Wu, S., “Calculation of Interfacial Tension in Polymer Systems”, J. Polym. Sci.: Part C, 34, 1930 (1971) DOI: http://dx.doi.org/10.1002/polc.5070340105Suche in Google Scholar

Wu, S., “Interfacial and Surface Tensions of Polymers”, J. Macromol. XI.-Revs. Macromol. Chem., C10, 173 (1974) DOI: http://dx.doi.org/10.1080/15321797408080004Suche in Google Scholar

Wu, S.: Polymer Interface and Adhesion, 1st Edition, Marcel Dekker Publisher, New York (1982)Suche in Google Scholar

Zeng, J., Saltysiak, B., Johnson, W. S., Schilraldi, D. A. and Kumar, S., “Processing and Properties of Poly(methyl methacrylate)/Carbon Nanofiber Composites”, Composites Part B, 35, 173178 (2004) DOI: http://dx.doi.org/10.1016/j.compositesb.2003.08.009Suche in Google Scholar

Zhao, Q., Wagner, H. D., “Raman Spectroscopy of Carbon-Nanotube-Based Composites”, Philos. Transact. A: Math. Phys. Eng. Sci., 362, 24072424 (2004) PMid:15482985; DOI: http://dx.doi.org/10.1098/rsta.2004.1447Suche in Google Scholar PubMed

Zhou, P., Yu, W., Zhou, C., Liu, F., Hou, L. and Wang, J., “Morphology and Electrical Properties of Carbon Black Filled LLDPE/EMA Composites”, J. Appl. Polym. Sci., 103, 487492 (2007) DOI: http://dx.doi.org/10.1002/app.25020Suche in Google Scholar

Received: 2013-03-05
Accepted: 2013-10-06
Published Online: 2014-03-01
Published in Print: 2014-03-28

© 2014, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Invited Articles
  4. The Effect of Molecular Parameters on the Thermal Behavior of Recycled and Virgin Polyamides and Their Glass Fiber Composites
  5. Carbon Nanotube Conductive Networks through the Double Percolation Concept in Polymer Systems
  6. Application of the Experimental Results to the Modified Halpin-Tsai Micromechanical Model to Evaluate the Clay Dispersion in Clay-Reinforced Polyethylene Nanocomposites
  7. Influence of Solvent Washing and Soxhlet Extraction on the Thermal Stability of Organically Modified Layered Silicates
  8. Effect of Screw Rotation Speed on the Properties of Polycarbonate/Vapor-Grown Carbon Fiber Composites Prepared by Melt Compounding
  9. Simulation of Co-Rotating Twin Screw Extrusion Process Subject to Pressure-Dependent Wall Slip at Barrel and Screw Surfaces: 3D FEM Analysis for Combinations of Forward- and Reverse-Conveying Screw Elements
  10. Preparation of Polymer-Clay Nanocomposites by Melt Mixing in a Twin Screw Extruder: Using On-Line SAOS Rheometry to Assess the Level of Dispersion
  11. Residence Time Distribution in a High Shear Twin Screw Extruder
  12. PVDF/Carbonnanotubes/Nanoclay Composites for Piezoelectric Applications
  13. Viscoelastic and Electrical Properties of Carbon Nanotubes Filled Poly(butylene succinate)
  14. Sealability and Seal Characteristics of PE/EVA and PLA/PCL Blends
  15. Effects of Polymer Viscosity and Nanofillers on Morphology of Nanofibers Obtained by a Gas Jet Method
  16. Modeling of the Torque Requirements for the Mixing and Dispersion of Silica into Rubber
  17. High Shear Processing of (PP/EPR)/Silica Nanocomposites: Improvement of Morphology and Properties
  18. An Overview of Molten Polymer Drawing Instabilities
  19. PPS News
  20. PPS News
  21. Seikei-Kakou Abstracts
  22. Seikei-Kakou Abstracts
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.2778/html
Button zum nach oben scrollen