Startseite Residence Time Distribution in a High Shear Twin Screw Extruder
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Residence Time Distribution in a High Shear Twin Screw Extruder

  • E. Fel , V. Massardier , F. Mélis , B. Vergnes und P. Cassagnau
Veröffentlicht/Copyright: 1. März 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The residence time distributions (RTD) of a high shear twin screw extruder were measured by an on–line UV fluorescence device. First, by increasing throughput (Q) and screw speed (N), a decrease of the complex viscosity of the studied polypropylene (PP) was observed, revealing chain scissions. It was associated to high viscous dissipation taking place during extrusion, and more particularly under high shear conditions. Then the impact of these experimental conditions on the RTD was carried out. As expected, an increase of usual throughputs and screw speeds decrease mostly the RTD characteristic data. In this study industrial rate have been studied: throughput varied from 1.5 up to 22 kg h−1 and screw speed varied from 200 min−1 up to 1 200 min−1. However, by increasing the screw speed over usual values (from 500 up to 1 200 min−1), the variation of some experimental RTD characteristics were unexpected. Indeed, the slope of the shape of the experimental RTD function E(t) changed significantly. This phenomenon will be called lag or delay time. This result was only observed at low throughputs and high screw rotation speeds. To finish, a modeling software of twin screw extrusion process was used to compare experimental and calculated results. For usual processing conditions (up to 700 min−1), the simulation predicts nicely the experimental RTDs. However, at high screw speed (N > 800 min−1) and moderate throughput (Q = 4 kg h−1), the simulation fails to predict the RDT delay time. Hence, some side effects apparently occurred during high shear extrusion at low throughputs.


* Mail address: Philippe Cassagnau, University of Lyon, CNRS UMR 5223, Ingénierie des Matériaux Polymères (IMP)@Lyon1, 15 Boulevard Latarjet, 69622 Villeurbanne France E-mail:

References

Arash, S. F., Martien, A., Hulsen, Han, E. H. M., Navid, M. H. F. and Patrick, D. A., “Tools to Simulate Distributive Mixing in Twin-Screw Extruder”, Macromol. Theory Sim., 21, 217240 (2012) DOI: http://dx.doi.org/10.1002/mats.201100077Suche in Google Scholar

Bigio, D. I., Elkouss, P., Wetzel, M. D. and Raghavan, S. R., “Influence of Polymer Viscoelasticity on the Residence Distributions of Extruders”, Aiche J., 52, 14511459 (2006) DOI: http://dx.doi.org/10.1002/aic.10754Suche in Google Scholar

Bigio, D., Gao, J., Gregory, C., Briber, R. M. and Wetzel, M. D., “Residence-Time Distribution Model for Twin-Screw Extruders”, Aiche J., 45, 25412549 (1999) DOI: http://dx.doi.org/10.1002/aic.690451210Suche in Google Scholar

Brandrup, J., Immergut, E. H.: Polymer Data Handbook, John Wiley & Sons, New York (1989)Suche in Google Scholar

Cao, K., Li, Y., Lu, Z.-Q., Wu, S.-L., Chen, Z.-H., Yao, Z. and Huang, Z.-H., “Preparation and Characterization of High Melt Strength Polypropylene with Long Chain Branched Structure by the Ractive Extrusion Process”, J. Appl. Polym. Sci., 121, 33843392 (2011) DOI: http://dx.doi.org/10.1002/app.34007Suche in Google Scholar

Cao, Y., Li, H., “Influence of Ultrasound on the Processing and Structure of Polypropylene during Extrusion”, Polym. Eng. Sci., 42, 15341540 (2002) DOI: http://dx.doi.org/10.1002/pen.11049Suche in Google Scholar

Carneiro, O. S., Covas, J. A. and Vergnes, B., “Experimental and Theoretical Study of the Twin Screw Extrusion of Polypropylene”, J. Appl. Polym. Sci., 78, 14911430 (2000) DOI: http://dx.doi.org/10.1002/1097-4628(20001114)78:7<1419::AID-APP130>3.0.CO;2-BSuche in Google Scholar

Cassagnau, P., Bounor-Legaré, V. and Fenouillot, F., “Reactive Processing of Thermoplastic Polymers: A Review of the Fundamental Aspects”, Int. Polym. Proc., 22, 218258 (2007)10.3139/217.2032Suche in Google Scholar

Cassagnau, P., Mélis, F. and Bounor-Legare, V., “UV Fluorescence Monitoring of the Mixing of Molten Polymers in a Batch Mixer”, Polym. Eng. Sci., 43, 929932 (2003) DOI: http://dx.doi.org/10.1002/pen.10076Suche in Google Scholar

Cassagnau, P., Mijangos, C. and Michel, A., “An Ultraviolet Method for the Determination of the Residence Time Distribution in a Twin Screw Extruder”, Polym. Eng. Sci., 31, 772778 (1991) DOI: http://dx.doi.org/10.1002/pen.760311103Suche in Google Scholar

Da Costa, H. M., Ramosa, V. D. and De Oliveira, M. G., “Degradation of Polypropylene (PP) during Multiple Extrusions: Thermal Analysis, Mechanical Properties and Analysis of Variance”, Polym. Test., 26, 676684 (2007) DOI: http://dx.doi.org/10.1016/j.polymertesting.2007.04.003Suche in Google Scholar

David, J. C., Chalamet, Y., Taha, M., “Reactive Processing of Nonmisicble Polymers: Shear Rate Effect”, J. Appl. Polym. Sci., 92, 23572362 (2004) DOI: http://dx.doi.org/10.1002/app.13698Suche in Google Scholar

De Loor, A., Cassagnau, P., Michel, A. and Vergnes, B., “Morphological Changes of a Polymer Blend into a Twin-Screw Extruder”, Int. Polym. Proc., 9, 211218 (1994) DOI: http://dx.doi.org/10.3139/217.940211Suche in Google Scholar

Fang, H., Mighri, F., Ajji, A., Cassagnau, P. and Elkoun, S., “Flow Behaviour in a Corotating Twin-Screw Extruder of Pure Polymers and Blends: Characterization by Fluorescence Monitoring Technique”, J. Appl. Polym. Sci., 120, 23042312 (2011) DOI: http://dx.doi.org/10.1002/app.33414Suche in Google Scholar

Hu, G.-H., Kadri, I. and Picot, C., “One-Line Measurement of the Residence Time Distribution in Screw Extruders”, Polym. Eng. Sci., 39, 930939 (1999) DOI: http://dx.doi.org/10.1002/pen.11482Suche in Google Scholar

Kao, S. V., Allison, G. R., “Residence Time Distribution in a Twin Screw Extruder”, Polym. Eng. Sci., 24, 645651 (1984) DOI: http://dx.doi.org/10.1002/pen.760240906Suche in Google Scholar

Kohlgrüber, K.: Co-Rotationg Twin Screw Extruders Fundamentals, Technology, and Applications, Hanser, Munich (2007) DOI: http://dx.doi.org/10.3139/9783446433410Suche in Google Scholar

Lertwimolnun, W., Vergnes, B., “Influence of Screw Profile and Extrusion Conditions on the Microstructure of Polypropylene/Organoclay Nanocomposites”, Polym. Eng. Sci., 47, 21002109 (2007) DOI: http://dx.doi.org/10.1002/pen.20934Suche in Google Scholar

Li, Y., Shimizu, H., “Fabrication of Nanostructured Polycarbonate/Poly(methyl methacrylate) Blends with Improved Optical and Mechanical Poperties by High-Shear Processing”, Polym. Eng. Sci., 51, 14371445 (2011) DOI: http://dx.doi.org/10.1002/pen.21879Suche in Google Scholar

Mack, C., Sathyanarayanal, S., Weiss, P., Mikonsaari, I., Hübner, C., Henning, F. and Elsner, P., “Twin–Screw Extrusion of Multi Walled Carbon Nanotubes Reinforced Polycarbonate Composites: Investigation of Electrical and Mechanical Properties”, IOP Conf. Ser.: Mater. Sci. Eng., 40, 110 (2012) DOI: http://dx.doi.org/10.1088/1757-899X/40/1/012020Suche in Google Scholar

Methenni, A., Mighri, F., Elkoun, S., Fang, H. and Cassagnau, P., “Fluorescence Quentching of Fluoranthere by Maleic Anhydride in Solution and During Nonreactive and Reactive Twin-Screw Extrusion”, Polym. Eng. Sci., 53, 295300 (2013) DOI: http://dx.doi.org/10.1002/pen.23263Suche in Google Scholar

Michaeli, W., Greffenstein, A. and Berghaus, U., “Twin Screw Extrusion for Reactive Extrusion”, Polym. Eng. Sci., 35, 14851504 (1995) DOI: http://dx.doi.org/10.1002/pen.760351902Suche in Google Scholar

Modesti, M., Lorenzetti, A., Bon, D. and Besco, S., “Thermal Behaviour of Compatibilised Polypropylene Nanocomposite: Effect of Processing Conditions”, Polym. Degrad. Stab., 91, 672680 (2006) DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2005.05.018Suche in Google Scholar

Nietsch, T., Cassagnau, P. and Michel, A., “Melt Temperatures and Residence Times in an Extruder by Infrared Spectroscopy”, Int. Polym. Proc., 4, 307315 (1997) DOI: http://dx.doi.org/10.3139/217.970307Suche in Google Scholar

Oberlehner, Cassagnau P., and Michel, A., “Local Residence Time Distribution in a Twin Screw Extruder”, Chem. Eng. Sci., 49, 389739071 (1994) DOI: http://dx.doi.org/10.1016/0009-2509(94)00190-1Suche in Google Scholar

Peterson, J. D., Vyazovkin, S. and Wight, C. A., “Kinetics of the Thermal and Thermo-Oxidative Degradation of Polystyrene, Polyethylene and Poly(propylene)”, Macr. Chem. Phys., 202, 775784 (2001) DOI: http://dx.doi.org/10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-GSuche in Google Scholar

Poulesquen, A., Vergnes, B., “A Study of Residence Time Distribution in a Co-Rotating Twin-Screw Extruders. Part I: Theoretical Modeling”, Polym. Eng. Sci., 43, 18411848 (2003) DOI: http://dx.doi.org/10.1002/pen.10156Suche in Google Scholar

Poulesquen, A., Vergnes, B., Cassagnau, P., Michel, A., Carneiro, O. S. and Covas, J. A., “A Study of Residence Time Distribution in a Co-Rotating Twin-Screw Extruders. Part II: Experimental Validation”, Polym. Eng. Sci., 43, 18491862 (2003) DOI: http://dx.doi.org/10.1002/pen.10157Suche in Google Scholar

Stivala, S. S., Reich, L., “Structure vs. Stability in Polymer Degradation”, Polym. Eng. Sci., 20, 654661 (1980) DOI: http://dx.doi.org/10.1002/pen.760201003Suche in Google Scholar

Teyssandier, F., Cassagnau, P., Gérard, J.-F., Mignard, N. and Mélis, F., “Morphology and Mechanical Properties of PA12/Plasticized Starch Blends Prepared by High-Shear Extrusion”, Mat. Chem. Phys., 133, 913923 (2012) DOI: http://dx.doi.org/10.1016/j.matchemphys.2012.01.117Suche in Google Scholar

Utracki, L. A., Shi, Z. H., “Development of Polymer Blend Morphology during Compounding in a Twin Screw Extruder. Part I: Droplet Dispersion and Coalescence – A Review”, Polym. Eng. Sci., 32, 18241833 (1992) DOI: http://dx.doi.org/10.1002/pen.760322405Suche in Google Scholar

Vergnes, B., Della Valle, G. and Delamare, L., “A Global Computer Software for Polymer Flows in Corotating Twin Screw Extruders”, Polym. Eng. Sci., 38, 17811792 (1998) DOI: http://dx.doi.org/10.1002/pen.10348Suche in Google Scholar

Wolf, D., Holin, N. and White, D. H., “Residence Time Distribution in a Commercial Twin-Screw Extruder”, Polym. Eng. Sci., 26, 640646 (1986) DOI: http://dx.doi.org/10.1002/pen.760260910Suche in Google Scholar

Received: 2013-04-18
Accepted: 2013-10-06
Published Online: 2014-03-01
Published in Print: 2014-03-28

© 2014, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Invited Articles
  4. The Effect of Molecular Parameters on the Thermal Behavior of Recycled and Virgin Polyamides and Their Glass Fiber Composites
  5. Carbon Nanotube Conductive Networks through the Double Percolation Concept in Polymer Systems
  6. Application of the Experimental Results to the Modified Halpin-Tsai Micromechanical Model to Evaluate the Clay Dispersion in Clay-Reinforced Polyethylene Nanocomposites
  7. Influence of Solvent Washing and Soxhlet Extraction on the Thermal Stability of Organically Modified Layered Silicates
  8. Effect of Screw Rotation Speed on the Properties of Polycarbonate/Vapor-Grown Carbon Fiber Composites Prepared by Melt Compounding
  9. Simulation of Co-Rotating Twin Screw Extrusion Process Subject to Pressure-Dependent Wall Slip at Barrel and Screw Surfaces: 3D FEM Analysis for Combinations of Forward- and Reverse-Conveying Screw Elements
  10. Preparation of Polymer-Clay Nanocomposites by Melt Mixing in a Twin Screw Extruder: Using On-Line SAOS Rheometry to Assess the Level of Dispersion
  11. Residence Time Distribution in a High Shear Twin Screw Extruder
  12. PVDF/Carbonnanotubes/Nanoclay Composites for Piezoelectric Applications
  13. Viscoelastic and Electrical Properties of Carbon Nanotubes Filled Poly(butylene succinate)
  14. Sealability and Seal Characteristics of PE/EVA and PLA/PCL Blends
  15. Effects of Polymer Viscosity and Nanofillers on Morphology of Nanofibers Obtained by a Gas Jet Method
  16. Modeling of the Torque Requirements for the Mixing and Dispersion of Silica into Rubber
  17. High Shear Processing of (PP/EPR)/Silica Nanocomposites: Improvement of Morphology and Properties
  18. An Overview of Molten Polymer Drawing Instabilities
  19. PPS News
  20. PPS News
  21. Seikei-Kakou Abstracts
  22. Seikei-Kakou Abstracts
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.2805/html
Button zum nach oben scrollen