Startseite Preparation of Polymer-Clay Nanocomposites by Melt Mixing in a Twin Screw Extruder: Using On-Line SAOS Rheometry to Assess the Level of Dispersion
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation of Polymer-Clay Nanocomposites by Melt Mixing in a Twin Screw Extruder: Using On-Line SAOS Rheometry to Assess the Level of Dispersion

  • S. Mould , J. Barbas , A. V. Machado , J. M. Nóbrega und J. A. Covas
Veröffentlicht/Copyright: 1. März 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A prototype on-line rotational rheometer was fixed between a twin screw extruder and a multi-rod die of an industrial pelletization line used for the manufacture of polymer-clay nanocomposites. After diverting the required amount of melt to the device, measurements were performed in small amplitude oscillatory shear and used to estimate the level of dispersion of the organoclay in the polypropylene matrix, by means of correlations that are commonly utilized. The aim is to determine whether changes in clay type, clay content, feed rate and screw speed cause detectable alterations in the rheological response and thus in the level of dispersion, with a view to practical process monitoring and control. The analysis of the data is supported by XRD and electron (scanning and transmission) microscopy observations.


* Mail address: Jose A. Covas, Department of Polymer Engineering/IPC/I3N, University of Minho, 4810 Guimarães, Portugal E-mail:

References

Barbas, J. M., Machado, A. V. and Covas, J. A., “Evolution of Dispersion along the Extruder during the Manufacture of Polymer–Organoclay Nanocomposites”, Chem. Eng. Sci., 98, 7787 (2013b) DOI: http://dx.doi.org/10.1016/j.ces.2013.05.004Suche in Google Scholar

Barbas, J. M., Machado, A. V. and Covas, J. A., “In-Line Near-Infrared Spectroscopy: A Tool to Monitor the Preparation of Polymer-Clay Nanocomposites in Extruders”, J. Appl. Polym. Sci., 127, 48994909 (2013a) DOI: http://dx.doi.org/10.1002/app.38106Suche in Google Scholar

Bertolino, M., Canevarolo, S. V., “Preparation of Extruded Melt-Mixed Polypropylene/Montmorillonite Nanocomposites with Inline Monitoring”, Polym. Eng. Sci., 50, 440445 (2010) DOI: http://dx.doi.org/10.1002/pen.21542Suche in Google Scholar

Bousmina, M., “Study of Intercalation and Exfoliation Processes in Polymer Nanocomposites”, Macromolecules, 39, 42594263 (2006) DOI: http://dx.doi.org/10.1021/ma052647fSuche in Google Scholar

Bur, A. J., Lee, Y.-H., Roth, S. C. and Start, P. R., “Measuring the Extent of Exfoliation in Polymer/Clay Nanocomposites Using Real-Time Process Monitoring Methods”, Polymer, 46, 1090810918 (2005)10.1016/j.polymer.2005.08.091Suche in Google Scholar

Bur, A. J., Roth, S. C., Start, P. R., LeeY.-H. and Maupin, P. H., “Monitoring Clay Exfoliation during Polymer/Clay Compounding Using Fluorescence Spectroscopy”, Trans. Inst. Measurem. Control, 29, 403416 (2007) DOI: http://dx.doi.org/10.1177/0142331207073486Suche in Google Scholar

Chen, B., Evans, J. R. G., “Impact Strength of Polymer-Clay Nanocomposites”, Soft Matter., 5, 35723584 (2009) DOI: http://dx.doi.org/10.1039/b902073jSuche in Google Scholar

Chen, B., Evans, J. R. G., Greenwell, H. C., Boulet, P., Coveney, P. V., Bowden, A. A. and Whiting, A., “A Critical Appraisal of Polymer–Clay NanocompositesChem. Soc. Rev., 37, 568594 (2008) PMid:18224264; DOI: http://dx.doi.org/10.1039/b702653fSuche in Google Scholar PubMed

Choudalakis, G., Gotsis, A. D., “Permeability of Polymer/Clay Nanocomposites: A Review, Eur. Polym. J., 45, 967984 (2009) DOI: http://dx.doi.org/10.1016/j.eurpolymj.2009.01.027Suche in Google Scholar

Covas, J. A., Maia, J. M., Machado, A. V. and Costa, P., “On-Line Rotational Rheometry for Extrusion and Compounding Operations”, J. Non-Newtonian Fluid. Mech., 148, 8896 (2008)10.1016/j.jnnfm.2007.04.009Suche in Google Scholar

Davis, C. H., Mathias, L. J., Gilman, J. W., Schiraldi, D. A., Shields, J. R., Trulove, P., Sutto, T. E. and Delong, H. C., “Effects of Melt-Processing Conditions on the Quality of Poly(ethylene terephthalate) Montmorillonite Clay Nanocomposites”, J. Polym. Sci. Part B, 40, 26612666 (2002) DOI: http://dx.doi.org/10.1002/polb.10331Suche in Google Scholar

Dennis, H. R., Hunter, D. L., Chang, D., Kim, S., White, J. L., Cho, J. W. and Paul, D. R., “Effect of Melt Processing Conditions on the Extent of Exfoliation in Organoclay-Based Nanocomposites”, Polymer, 42, 95139522 (2001) DOI: http://dx.doi.org/10.1016/S0032-3861(01)00473-6Suche in Google Scholar

Domenech, T., Peuvrel-Disdier, E. and Vergnes, B., “Influence of Twin-Screw Processing Conditions on Structure and Properties of Polypropylene-Organoclay Nanocomposites, Int. Polym. Proc., 27, 517526 (2012) DOI: http://dx.doi.org/10.3139/217.2591Suche in Google Scholar

Durmus, A., Kasgoz, A., Macosko, C. W., “Linear Low Density Polyethylene (LLDPE)/Clay Nanocomposites. Part I: Structural Characterization and Quantifying Clay Dispersion by Melt Rheology”, Polymer, 48, 44924502 (2007) DOI: http://dx.doi.org/10.1016/j.polymer.2007.05.074Suche in Google Scholar

Esfandiari, A., Nazokdast, H., RashidiA.-S. and Yazdanshenas, M.-E., “Review of Polymer-Organoclay Nanocomposites, J. Appl. Polym. Sci., 8, 545561 (2008) DOI: http://dx.doi.org/10.3923/jas.2008.545.561Suche in Google Scholar

Fasulo, P. D., Rodgers, W. R., Ottaviani, R. A., Hunter, D. L., “Extrusion Processing of TPO Nanocomposites”, Polym. Eng. Sci., 44, 10361045 (2004) DOI: http://dx.doi.org/10.1002/pen.20097Suche in Google Scholar

Giraldi, A. L. F., Bizarria, M. T. M., Silva, A. A., Velasco, J. I., d'Ávila, M. A. and Mei, L. H. I., “Effects of Extrusion Conditions on the Properties of Recycled Polyethylene Terephthalate/Nanoclay Nanocomposites Prepared by a Twin Screw Extruder”, J. Appl. Polym. Sci., 108, 22522259 (2008) DOI: http://dx.doi.org/10.1002/app.27280Suche in Google Scholar

Hua, H., Onyebuekea, L. and Abatan, A., “Characterizing and Modeling Mechanical Properties of Nanocomposites-Review and Evaluation”, J. Minerals Mat. Charact. Eng., 9, 275319 (2010)Suche in Google Scholar

Hussain, F., Hojjati, M., Okamoto, M. and Gorga, R. E., “Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview”, J. Compos. Mater., 40, 15111575 (2006) DOI: http://dx.doi.org/10.1177/0021998306067321Suche in Google Scholar

Jancar, J., Douglas, J. F., Starr, F. W., Kumar, S. K., Cassagnau, P., Lesser, A. J., Sternstein, S. S. and Buehler, M. J., “Current Issues in Research on Structure–Property Relationships in Polymer Nanocomposites”, Polymer, 51, 33213343 (2010) DOI: http://dx.doi.org/10.1016/j.polymer.2010.04.074Suche in Google Scholar

Jeon, I.-Y., Baek, J. B., “Nanocomposites Derived from Polymers and Inorganic Nanoparticles”, Materials, 3, 36543674 (2010) DOI: http://dx.doi.org/10.3390/ma3063654Suche in Google Scholar

Kato, M., Usuki, A., Hasegawa, N., Okamoto, H. and Kawasumi, M., “Development and Applications of Polyolefin- and Rubber-Clay Nanocomposites, Polym. J., 43, 583593 (2011) DOI: http://dx.doi.org/10.1038/pj.2011.44Suche in Google Scholar

Kiliaris, P., Papaspyrides, C. D., “Polymer/Layered Silicate (Clay) Nanocomposites: An Overview of Flame Retardancy, Prog. Polym. Sci., 35, 902958 (2010) DOI: http://dx.doi.org/10.1016/j.progpolymsci.2010.03.001Suche in Google Scholar

Kracalik, M., Laske, S., Witschnigg, A. and Holzer, C., “Elongational and Shear Flow in Polymer-Clay Nanocomposites Measured by On-Line Extensional and Off-Line Shear Rheometry”, Rheol. Acta, 50, 937944 (2011) DOI: http://dx.doi.org/10.1007/s00397-011-0545-2Suche in Google Scholar

Krishnamoorti, R., Giannelis, E. P., “Rheology of End-Tethered Polymer Silicate Nanocomposites”, Macromolecules, 30, 40974102 (1997) DOI: http://dx.doi.org/10.1021/ma960550aSuche in Google Scholar

Lee, Y.-H., Burr, A. J., Roth, S. C., Start, P. R. and Harris, R. H., “Monitoring the Relaxation Behavior of Nylon/Clay Nanocomposites in the Melt with an Online Dielectric Sensor”, Polym. Adv. Technol., 16, 249256 (2005) DOI: http://dx.doi.org/10.1002/pat.576Suche in Google Scholar

Lertwimolnun, W., Vergnes, B., “Influence of Screw Profile and Extrusion Conditions on the Microstructure of Polypropylene/Organoclay Nanocomposites”, Polym. Eng. Sci., 47, 21002109 (2007) DOI: http://dx.doi.org/10.1002/pen.20934Suche in Google Scholar

Lertwimolnun, W., Vergnes, B., “Effect of Processing Conditions on the Formation of Polypropylene/Organoclay Nanocomposites in a Twin-Screw Extruder”, Polym. Eng. Sci., 46, 314323 (2006) DOI: http://dx.doi.org/10.1002/pen.20458Suche in Google Scholar

Li, S., Lin, M. M., Toprak, M. S., KimD.K. and Muhammed, M., “Nanocomposites of Polymer and Inorganic Nanoparticles for Optical and Magnetic Applications”, Nano Review, 1, Aug. (2010), <http://www.nano-reviews.net/index.php/nano/article/view/5214/5842>10.3402/nano.v1i0.5214Suche in Google Scholar PubMed PubMed Central

Maupin, P. H., Gilman, J. W., Harris, R. H., Bellayer, S., Bur, A. J., Roth, S. C., Murariu, M., Morgan, A. B. and Harris, J. D., “Optical Probes for Monitoring Intercalation and Exfoliation in Melt-Processed Polymer Nanocomposites”, Macromol. Rapid Commun., 25, 788792 (2004) DOI: http://dx.doi.org/10.1002/marc.200300262Suche in Google Scholar

Mittal, V., “Polymer Layered Silicate Nanocomposites: A Review”, Materials, 2, 9921057 (2009) DOI: http://dx.doi.org/10.3390/ma2030992Suche in Google Scholar

Modesti, M., Lorenzetti, A., Bon, D. and Besco, S., “Effect of Processing Conditions on Morphology and Mechanical Properties of Compatibilized Polypropylene Nanocomposites”, Polymer, 46, 1023710245 (2005) DOI: http://dx.doi.org/10.1016/j.polymer.2005.08.035Suche in Google Scholar

Mould, S. T., Barbas, J., Machado, A. V., Nóbrega, J. M. and Covas, J. A., “Measuring the Rheological Properties of Polymer Melts with On-Line Rotational Rheometry”, Polym. Test., 30, 602610 (2011) DOI: http://dx.doi.org/10.1016/j.polymertesting.2011.05.002Suche in Google Scholar

Mould, S. T., Barbas, J., Machado, A. V., Nóbrega, J. M. and Covas, J. A., “Monitoring the Production of Polymer Nanocomposites by Melt Compounding with On-Line Rheometry, Int. Polym. Proc., 27, 527534 (2012) DOI: http://dx.doi.org/10.3139/217.2597Suche in Google Scholar

Okada, A., Usuki, A., “Twenty Years of Polymer-Clay Nanocomposites”, Macromol. Mater. Eng., 291, 14491476 (2006) DOI: http://dx.doi.org/10.1002/mame.200600260Suche in Google Scholar

Peltola, P., Valipakka, E., Vourinen, J., Syrjala, S. and Hanhi, K., “Effect of Rotational Speed of Twin Screw Extruder on the Microstructure and Rheological and Mechanical Properties of Nanoclay-Reinforced Polypropylene Nanocomposites”, Polym. Eng. Sci., 46, 9951000 (2006) DOI: http://dx.doi.org/10.1002/pen.20586Suche in Google Scholar

Scatteia, L., Scarfato, P. and Acierno, D., “Processing, Rheology and Structure of Melt Compounded PBT-Clay Nanocomposites Having Different Chemical Composition”, E-Polymers, 23, 115 (2006)Suche in Google Scholar

Shah, R. K., Paul, D. R., “Organoclay Degradation in Melt Processed Polyethylene Nanocomposites”, Polymer, 47, 40754084 (2006) DOI: http://dx.doi.org/10.1016/j.polymer.2006.02.031Suche in Google Scholar

Sinha Ray, S., Okamoto, M., “Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing”, Prog. Polym. Sci., 28, 15391641 (2003) DOI: http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002Suche in Google Scholar

Sinha Ray, S., Yamada, K., Okamoto, M. and Ueda, K., “New Polylactide/Layered Silicate Nanocomposite: A Novel Biodegradable Material”, Nano Lett., 2, 10931096 (2002) DOI: http://dx.doi.org/10.1021/nl0202152Suche in Google Scholar

Treece, M. A., Zhang, W., Moffit, R. D. and Oberhauser, J. P., “Twin-Screw Extrusion of Polypropylene-Clay Nanocomposites: Influence of Masterbatch Processing, Screw Rotation Mode and Sequence”, Polym. Eng. Sci., 47, 898911 (2007) DOI: http://dx.doi.org/10.1002/pen.20774Suche in Google Scholar

Utracki, L. A.: Clay-Containing Polymeric Nanocomposites, 2nd Volume, Smithers Rapra, Shawbury, Shrewsbury, UK (2004) PMid:15549962Suche in Google Scholar

Vergnes, B., “The Use of Apparent Yield Stress to Characterize Exfoliation in Polymer Nanocomposites”, Int. Polym. Proc., 26, 229232 (2011) DOI: http://dx.doi.org/10.3139/217.2462Suche in Google Scholar

Vermogen, A., Masenelli-Varlot, K., Séguéla, R., Duchet-Rumeau, J., Boucard, S. and Prele, P., “Evaluation of the Structure and Dispersion in Polymer-Layered Silicate Nanocomposites”, Macromolecules, 38, 96619669 (2005) DOI: http://dx.doi.org/10.1021/ma051249Suche in Google Scholar

Witschnigg, A., Laske, S., Kracalik, M., Feuchter, M., Pinter, G., Maier, G., Märzinger, W., Haberkorn, M., Langecker, G. R. and Holzer, C., “In-Line Characterization of Polypropylene Nanocomposites Using FT-NIR”, J. Appl. Polym. Sci., 117, 30473053 (2010)Suche in Google Scholar

Xu, L., Nakajima, H., Manias, E. and Krishnamoorti, R., “Tailored Nanocomposites of Polypropylene with Layered Silicates”, Macromolecules, 42, 37953803 (2009) DOI: http://dx.doi.org/10.1021/ma9002853Suche in Google Scholar

Yu, Z.-Z., Dasari, A. and Mai, Y.-M., “Chapter 7 Polymer-Clay Nanocomposites – A Review of Mechanical and Physical Properties” in Processing and Properties of Nanocomposites, Advani, S. G. (Ed), World Sci. Publ., Singapore (2006)10.1142/9789812772473_0007Suche in Google Scholar

Zhang, J., Manias, E. and Wilkie, C., “Polymerically Modified Layered Silicates: An Effective Route to Nanocomposites”, J. Nanosci. Nanotechnol., 8, 15971615 (2008) PMid:18572560; DOI: http://dx.doi.org/10.1166/jnn.2008.037Suche in Google Scholar

Zhu, L., Xanthos, M., “Effects of Process Conditions and Mixing Protocols on Structure of Extruded Polypropylene Nanocomposites”, J. Appl. Polym. Sci., 93, 18911899 (2004) DOI: http://dx.doi.org/10.1002/app.20658Suche in Google Scholar

Received: 2013-04-16
Accepted: 2013-09-30
Published Online: 2014-03-01
Published in Print: 2014-03-28

© 2014, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Invited Articles
  4. The Effect of Molecular Parameters on the Thermal Behavior of Recycled and Virgin Polyamides and Their Glass Fiber Composites
  5. Carbon Nanotube Conductive Networks through the Double Percolation Concept in Polymer Systems
  6. Application of the Experimental Results to the Modified Halpin-Tsai Micromechanical Model to Evaluate the Clay Dispersion in Clay-Reinforced Polyethylene Nanocomposites
  7. Influence of Solvent Washing and Soxhlet Extraction on the Thermal Stability of Organically Modified Layered Silicates
  8. Effect of Screw Rotation Speed on the Properties of Polycarbonate/Vapor-Grown Carbon Fiber Composites Prepared by Melt Compounding
  9. Simulation of Co-Rotating Twin Screw Extrusion Process Subject to Pressure-Dependent Wall Slip at Barrel and Screw Surfaces: 3D FEM Analysis for Combinations of Forward- and Reverse-Conveying Screw Elements
  10. Preparation of Polymer-Clay Nanocomposites by Melt Mixing in a Twin Screw Extruder: Using On-Line SAOS Rheometry to Assess the Level of Dispersion
  11. Residence Time Distribution in a High Shear Twin Screw Extruder
  12. PVDF/Carbonnanotubes/Nanoclay Composites for Piezoelectric Applications
  13. Viscoelastic and Electrical Properties of Carbon Nanotubes Filled Poly(butylene succinate)
  14. Sealability and Seal Characteristics of PE/EVA and PLA/PCL Blends
  15. Effects of Polymer Viscosity and Nanofillers on Morphology of Nanofibers Obtained by a Gas Jet Method
  16. Modeling of the Torque Requirements for the Mixing and Dispersion of Silica into Rubber
  17. High Shear Processing of (PP/EPR)/Silica Nanocomposites: Improvement of Morphology and Properties
  18. An Overview of Molten Polymer Drawing Instabilities
  19. PPS News
  20. PPS News
  21. Seikei-Kakou Abstracts
  22. Seikei-Kakou Abstracts
Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.2803/html
Button zum nach oben scrollen