Startseite Evolution of Morphology of iPP in Processing Conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evolution of Morphology of iPP in Processing Conditions

Relevance of Solidification Pressure
  • I. Coccorullo , R. Pantani und G. Titomanlio
Veröffentlicht/Copyright: 30. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A model for crystallization kinetics that accounts for the formation of different crystalline phases and is able to describe the morphological characteristics of samples solidified under quiescent conditions, has been enriched to account for the effect of solidification pressure. The effect of pressure was considered by assuming a linear increase of melting and glass transition temperatures (which are involved in the description of the growth rate and nucleation density of the alpha phase). Moreover, pressure was incorporated in the kinetic constant adopted to describe the evolution of the mesomorphic phase. The parameters of the model were identified on the basis of literature data on the distribution of crystalline phases in samples solidified under different pressures. The modified model also satisfactorily described PVT curves up to 100 MPa, and is now able to describe the evolution of morphology during solidification at cooling rates as fast as several hundreds of Kelvin degrees per second and under pressures of as high as 100 MPa.


Mail address: G. Titomanlio, Dept. of Chemical and Food Engineering, University of Salerno, Via Ponte don Melillo, I-84084 Fisciano (SA), Italy E-mail:

References

1 Coccorullo, I., Pantani, R., Titomanlio, G.: Polymer44 (1), p. 307 (2003).10.1016/S0032-3861(02)00762-0Suche in Google Scholar

2 La Carrubba, V., Brucato, V., Piccarolo, S.: Polym. Eng. Sci.40 (11) p. 2430 (2000).10.1002/pen.11375Suche in Google Scholar

3 Piccarolo, S., Alessi, S., Brucato, V., Titomanlio, G.: Crystallization Behavior at High Cooling Rates of two Polypropylene, in Crystallization of Polymers, NATO Advanced Research Workshop, Mons, Belgium (1992) and NATO ASI Series, Marcel Dosiere, The Netherlands Eds., Series C, Mathematical and Physical Science, p. 475 (1993).Suche in Google Scholar

4 Hieber, C. A.: Int. Polym. Process12, p. 249 (1997).10.3139/217.970249Suche in Google Scholar

5 Eder, G., Janeschitz-Kriegl, H.: Materials Science and Technology. Meijer, H. E. H. (Ed.), Wiley, New York (1997).Suche in Google Scholar

6 Angelloz, C., Fulchiron, R., Douillard, A., Chabert, B., Fillit, R., Vautrin, A., David, L.: Macromolecules33, p. 4138 (2000).10.1021/ma991813eSuche in Google Scholar

7 Ito, H., Minagawa, K., Takimoto, J., Tada, K., Koyama, K.: Int. Polym. Process.11, p. 363 (1996).10.3139/217.960363Suche in Google Scholar

8 Vittoria, V.: Properties of iPP, Handbook of Polymer Science and Technology (1989).Suche in Google Scholar

9 Pantani, R., Titomanlio, G.: Journal of Applied Polymer Science vol.80, p. 267 (2001).10.1002/app.1438Suche in Google Scholar

10 Watanabe, K., Sukuzi, T., Masubuchi, Y., Taniguchi, T., Takimoto, J., Koyama, K.: Polymer44, p. 5023 (2003).10.1016/S0032-3861(03)00604-9Suche in Google Scholar

11 La Carrubba, V.: Ph.D. Thesis, Palermo (2000).Suche in Google Scholar

Received: 2005-2-11
Accepted: 2005-2-15
Published Online: 2013-04-30
Published in Print: 2005-05-01

© 2005, Carl Hanser Verlag, Munich

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.1877/html
Button zum nach oben scrollen