Home Nozzle Injection of Physical Blowing Agents in the Injection Molding of Microcellular Foams
Article
Licensed
Unlicensed Requires Authentication

Nozzle Injection of Physical Blowing Agents in the Injection Molding of Microcellular Foams

  • V. L. Bravo and A. N. Hrymak
Published/Copyright: April 30, 2013
Become an author with De Gruyter Brill

Abstract

Results obtained from the implementation of a physical foaming system for injection molding are presented. The implemented design involves the injection of gas in the upstream side of a special nozzle composed by a static mixing element (SMX type) and a shut-off valve. In order to avoid the formation of large pockets of gas in the injection point, a porous metal plug is used to create a multiple point injection area with 20 lm size pores. Gas injection simultaneously with polymer melt injection gave a consistent foamed material. However, given the total pressure drop in the system of static mixers, runners and mold, there is an inherent operational pressure limitation. The polymer injection pressure needs to be kept at a pressure below the gas injection pressure, therefore limiting the speed at which the polymer can be injected in the mold.


Mail address: A. N. Hrymak, MMRI/CAPPA-D Department of Chemical Engineering, McMaster University, 1280 Main St. W. Hamilton, Ontario Canada L8S 4L7 E-mail:

References

1 Throne, J. L.: Thermoplastic Foams, Sherwood Publishers (1995).Search in Google Scholar

2 Pierick, D., Jacobsen, K.: Plastics Eng.57, p. 46 (2001).Search in Google Scholar

3 Doroudiani, S., Park, C. B., Kortschot, M. T.: Polym. Eng. Sci.36, p. 2645 (1996).10.1002/pen.10664Search in Google Scholar

4 Michaeli, W., Habibi-Naini, S.: SPE ANTEC Proceedings (2002).Search in Google Scholar

5 Goodship, V., Stewart, R. L., Hansell, R., Ogur, E. O., Smith, G. F.: Cellular Polymers, p. 25 (2004).10.1177/026248930402300102Search in Google Scholar

6 Baldwin, D. F., Park, C. P, Suh, N. P.: Polym. Eng. Sci.36, p. 1425 (1996).10.1002/pen.10537Search in Google Scholar

7 Newit, D. M., Weale, K. E.: J. Chem Soc. (London), p. 1541 (1948).10.1039/jr9480001541Search in Google Scholar

8 Lundberg, J. L., Wilk, M. B., Huyett, M. J.: Appl. Phys.31, p. 1131 (1960).10.1063/1.1735771Search in Google Scholar

9 Durril, P. L., Griskey, R. G.: AICHE Journal12, p. 1147 (1966).10.1002/aic.690120619Search in Google Scholar

10 Van Krevelen, D. W.: Properties of Polymers. Elsevier, New York (1976).Search in Google Scholar

11 Durril, P. L., Griskey, R. G.: AICHE Journal15, p. 106 (1969).10.1002/aic.690150124Search in Google Scholar

12 Kumar, V., Suh, N. P.: Polym. Eng. Sci.30, p. 1323 (1990).10.1002/pen.760302010Search in Google Scholar

13 Grace, H. P.: Chem. Eng. Commun.14, p. 225 (1982).10.1080/00986448208911047Search in Google Scholar

14 Rauwendaal, C.: SPE ANTEC Proceedings1, p. 227 (1998).Search in Google Scholar

15 Shafi, M. A., Flumerfelt, R. W.: Chem. Eng. Sci.52, p. 627 (1997).10.1016/S0009-2509(96)00434-4Search in Google Scholar

16 Pierick, D., Jacobsen, K.: Plastics Engineering57, p. 46 (2001).Search in Google Scholar

17 Baldwin, D. F.: PhD thesis, M.I.T. Dept. Mech. Eng. (1994).Search in Google Scholar

18 Park, C. B., Baldwin, D. F., Suh, N. P.: Polym. Eng. Sci.35, p. 432 (1995).10.1002/pen.760350509Search in Google Scholar

Received: 2004-9-29
Accepted: 2005-2-15
Published Online: 2013-04-30
Published in Print: 2005-05-01

© 2005, Carl Hanser Verlag, Munich

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.1879/html
Scroll to top button