Home Stretch and Shape Distributions of Droplets with Interfacial Tension in Chaotic Mixing
Article
Licensed
Unlicensed Requires Authentication

Stretch and Shape Distributions of Droplets with Interfacial Tension in Chaotic Mixing

  • T. N. Pham and C. L. Tucker
Published/Copyright: April 30, 2013
Become an author with De Gruyter Brill

Abstract

A numerical simulation is developed to study the time-dependent shapes of droplets in chaotic mixing, as a function of interfacial tension and droplet-to-matrix viscosity ratio. The two-dimensional, time-periodic Newtonian flow between eccentric cylinders is used as a prototype mixing flow. The microstructure is modeled as three-dimensional ellipsoidal droplets, ignoring breakup and coalescence. A Lagrangian particle method is used to follow the microstructure. When interfacial tension is small (global capillary number is large), the major axes of the droplets exhibit the same stretching statistics as passive fluid elements and droplets with zero interfacial tension in chaotic flows: the geometric average of the stretch ratio grows exponentially with time, at a rate equal to the Lyapunov exponent of the flow, while the log of the major-axis stretch of the droplets, when scaled by its instantaneous mean and standard deviation, has a time-invariant, Gaussian global distribution and a non-uniform, fractal, and time-invariant spatial distribution. In this regime the stretch of the longest droplet axis is insensitive to interfacial tension, but the shape of the cross section is very sensitive: initially spherical droplets deform first into ribbons or sheets, but eventually transform into axisymmetric threads. The larger the global capillary number, the longer the sheet morphology persists, but sheet-like structures are always transient, and the sheets relax to threads if mixing goes on too long.


Mail address: C. L. Tucker, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green Street Urbana, IL 61801, USA E-mail:

References

1 Tomotika, S.: Proc. Roy. Soc Lond. Ser. A150, p. 322 (1935).10.1098/rspa.1935.0104Search in Google Scholar

2 Scott, C. E., Macosko, C. W.: Polymer Bulletin26, p. 341 (1991).10.1007/BF00587979Search in Google Scholar

3 Zumbrunnen, D. A., Chhibber, C.: Polymer43, p. 3267 (2002).10.1016/S0032-3861(02)00139-8Search in Google Scholar

4 Ottino, J. M.: The Kinematics of mixing: stretching, chaos, and transport. Cambridge University Press (1989).Search in Google Scholar

5 Zumbrunnen, D. A., Inamdar, S., Kwon, O., Verma, P.: Nano Letters2, p. 1143 (2002).10.1021/nl0256558Search in Google Scholar

6 Muzzio, F. J., Swanson, P. D., Ottino, J. M.: Phys. Fluids A3, p. 822 (1991).10.1063/1.858013Search in Google Scholar

7 Liu, M., Peshkin, R. L., Muzzio, F. J., Leong, C. W.: AIChE J.40, p. 1273 (1994).10.1002/aic.690400802Search in Google Scholar

8 Alvarez, M. M., Muzzio, F. J., Cerbelli, S., Adrover, A., Giona, M.: Phys. Rev. Letters81, p. 3396 (1998).10.1103/PhysRevLett.81.3395Search in Google Scholar

9 Adrover, A., Giona, M., Muzzio, F. J., Cerbelli, S., Alvarez, M. M.: Phys. Rev. E58, p. 447 (1998).10.1103/PhysRevE.58.447Search in Google Scholar

10 Adrover, A., Giona, M.: Physica A253, p. 143 (1998).10.1016/S0378-4371(97)00667-5Search in Google Scholar

11 Muzzio, F. J., Alvarez, M. M., Cerbelli, S., Giona, M, Adrover, A: Chem. Eng. Sci.55, p. 1497 (2000).10.1016/S0009-2509(99)00359-0Search in Google Scholar

12 Florek, C. A., Tucker, C. L.: Phys. Fluids A, to appear (2005).Search in Google Scholar

13 Tomotika, S: Proc. Roy. Soc. Lond. Ser. A153, p. 302 (1936).10.1098/rspa.1936.0003Search in Google Scholar

14 Janssen, J. M. H., Meijer, H. E. H.: J. Rheol.37, p. 597 (1993).10.1122/1.550385Search in Google Scholar

15 Tjahjadi, M., Ottino, J. M.: J. Fluid Mech.232, p. 191 (1991).10.1017/S0022112091003671Search in Google Scholar

16 Wetzel, E. D., Tucker, C. L.: J. Fluid Mech.426, p. 199 (2001).10.1017/S0022112000002275Search in Google Scholar

17 Jackson, N. E., Tucker, C. L.: J. Rheol.47, p. 659 (2003).10.1122/1.1562152Search in Google Scholar

18 Eshelby, J. D.: Proc. Roy. Soc Lond. Ser. A241, p. 376 (1957).10.1098/rspa.1957.0133Search in Google Scholar

19 Guido, S., Villone, M.: J. Rheol.42, p. 395 (1998).10.1122/1.550942Search in Google Scholar

20 Yamane, H., Takahashi, M., Hayashi, R., Okamoto, K., Kashihara, H., Masuda, T.: J. Rheol.42, p. 567 (1998).10.1122/1.550932Search in Google Scholar

21 Pham, T.: M. S. Thesis, University of Illinois at Urbana Champaign (2004).Search in Google Scholar

22 Wannier, G. H.: Quart. Appl. Math.8, p. 1 (1950).10.1090/qam/37146Search in Google Scholar

23 Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.: Numerical Recipes in Fortran, 2nd. Cambridge University Press (1992).Search in Google Scholar

24 Bazhlekov, I. B., Anderson, P. D., MeijerH. E.: Phys. Fluids16, p. 1064 (2004).10.1063/1.1648639Search in Google Scholar

25 Giona, M., Adrover, A., Muzzio, F. J., Cerbelli, S., Cerbelli, M., Alvarez, M.: Physica D132, p. 298 (1999).10.1016/S0167-2789(99)00018-4Search in Google Scholar

Received: 2004-9-21
Accepted: 2005-2-15
Published Online: 2013-04-30
Published in Print: 2005-05-01

© 2005, Carl Hanser Verlag, Munich

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.1880/html
Scroll to top button