Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
-
Hemant Kumar Dubey
und Preeti Lahiri
Abstract
Our goal is to investigate the physical, magnetic and dielectric properties of cadmium ferrite nanoparticles. Here we report the synthesis of nanosized cadmium ferrite (CdFe2O4) spinel ferrite by the sol-gel process using citric acid as a complexing agent. We assessed the properties of nano-CdFe2O4 by a variety of analytical and physical techniques. X-ray diffraction and Fourier transform infrared spectroscopy were performed to confirm spinel phase formation. Surface morphology images and compositional features were obtained using electron microscopy and other imaging techniques. Transmission electron microscopy analysis revealed the formation of nanoparticles with an average particle size of 40 nm. The magnetic properties were characterized by a highly sensitive magnetometer system (SQUID VSM) at room temperature revealing that the sintered sample of cadmium ferrite nanoparticles is ferromagnetic. We also studied dielectric behavior of the sintered pellet of the sample. We determined the frequency dependence of the dielectric permittivity, the loss factor and the impedance of the samples in the frequency range from 100 Hz to 20 MHz, at temperatures from 308–428 K at an interval of 40 °C. The dielectric behavior of ferrites is explained by the interface polarization, arising from the heterogeneous nature of its structure. Further research, both in terms of the preparation and characterization of ferrites, is warranted to better understand the nature and application of ferrites.
References
[1] A.M. Abu-Dief , M.S.M.Abdelbaky, D.Martínez-Blanco, Z.Amghouz, S.Garcia-Granda: Mater. Chem. Phys.174 (2016) 164. 10.1016/j.matchemphys.2016.02.065Suche in Google Scholar
[2] S. Salman , S.Afghahi, M.Jafarian, Y.Atassi, C.A.Stergiou: Mater. Chem. Phys.186 (2017) 584. 10.1016/j.matchemphys.2016.11.039Suche in Google Scholar
[3] Y. Li , J.Jiang, J.Zhao: Mater. Chem. Phys.87 (2004) 91. 10.1016/j.matchemphys.2004.05.007Suche in Google Scholar
[4] M. Siddique , N.M.Butt: Physica B: Condens. Matter405 (2010) 4211. 10.1016/j.physb.2010.07.012Suche in Google Scholar
[5] C. Pereira , A.M.Pereira, C.Fernandes, M.Rocha, R.Mendes, M.P.Fernandez-Garc, A.Guedes, P.B.Tavares, J.M.Greneche, J.P.Arau, C.Freire: Chem. Mater.24 (2012) 1496. 10.1021/cm300301cSuche in Google Scholar
[6] G. Singh , I.P.S.Kapoor, R.Dubey, P.Srivastava: Thermochimica Acta511 (2010) 112–11118. 10.1016/j.tca.2010.08.001Suche in Google Scholar
[7] B.I. Kharisov , H.V.R.Dias, O.V.Kharissova: Arab. J. Chem. (2014) 1878–5352. 10.1016/j.arabjc.2014.10.049.Suche in Google Scholar
[8] C. Li , X.Han and F.Cheng: Nat. Commun.6 (2015) 7345. 10.1038/ncomms8345Suche in Google Scholar PubMed PubMed Central
[9] M. Mouallem-Bahout , S.Bertrand, O.Peña: J. Solid State Chem.178 (2005) 1080. 10.1016/j.jssc.2005.01.009Suche in Google Scholar
[10] A.T. Raghavender , N.Biliškov, Ž.Skoko: Mater. Lett.65 (2011) 677. 10.1016/j.matlet.2010.11.071Suche in Google Scholar
[11] G. Vaidyanathan , S.Sendhilnathan: Physica B: Condens. Matter403 (2008) 2157. 10.1016/j.physb.2004.11.138Suche in Google Scholar
[12] Z. Wang , Y.Xie, P.Wang, Y.Ma, S.Jin, X.Liu: J. Magn. Magn. Mater.323 (2011) 3121. 10.1016/j.jmmm.2011.06.068Suche in Google Scholar
[13] R.D.K. Misra , A.Kale, R.S.Srivastava, O.N.Senkov: J. Mater. Sci. Technol.19 (2003) 826. 10.1179/026708303225003018Suche in Google Scholar
[14] S.P. Dalawai , A.B.Gadkari, T.J.Shinde, P.N.Vasambekar: Adv. Mater. Lett.4 (2013) 586. 10.5185/amlett.2012.10431Suche in Google Scholar
[15] M. Yokoyama , E.Ohta, T.Sato, T.Sato: J. Magn. Magn. Mater.183 (1998) 173. 10.1063/1.362834.Suche in Google Scholar
[16] R. Desai , R.V.Mehta, R.V.Upadhyay, A.Gupta, A.Praneet, K.V.Rao: Bull. Mater. Sci.30 (2007) 197. 10.1007/s12034-007-0035-4Suche in Google Scholar
[17] Y. Sharma , N.Sharma, G.V.S.Rao, B.V.R.Chowdary: Bull. Mater.32 (2009) 295. 10.1016/j.jpowsour.2009.02.096Suche in Google Scholar
[18] R. Mahesh , A.K.Dhar, T.Sasank, S.Thirunavukkarasu, T.Devadoss: Chin. Chem. Lett.22 (2011) 389. 10.1016/j.cclet.2010.11.002Suche in Google Scholar
[19] E.J. Mittemeijer , U.Welzel: Z. Kristallogr.223 (2008) 552–560. 10.1524/zkri.2008.1213Suche in Google Scholar
[20] A.K. Zak , W.H.Abd. Majid, M.E.Abrishami, R.Yousefi: Solid State Sci.13 (2011) 251–256. 10.1016/j.solidstatesciences.2010.11.024Suche in Google Scholar
[21] B.D. Cullity : Elements of X-ray Diffraction; Addison-Wesley Publishing Company, Inc., Philippines (1978).Suche in Google Scholar
[22] I.H. Gul , A.Z.Abbasi, F.Amin, M.A.Rehman, A.Maqsood: J. Magn. Magn. Mater.311 (2007) 49410.1016/j.physc.2006.08.004.Suche in Google Scholar
[23] M.S. Niasari , F.Davar, T.Mahmoudi: Polyhedron28 (2009) 1455. 10.1016/j.poly.2009.03.020Suche in Google Scholar
[24] R.D. Waldron : Phys. Rev.99 (1955) 1725. 10.1103/PhysRev.99.1727Suche in Google Scholar
[25] N.W. Grimes , A.J.Collett: Nature Phys. Sci.2 (1971) 230. 10.1038/physci230158a0Suche in Google Scholar
[26] T. Shanmugavel , S.G.Raj, G.R.Kumar, G.Rajarajan, D.Saravanan: J. King Saud Univ. Sci.27 (2015) 176. 10.1016/j.jksus.2014.12.006Suche in Google Scholar
[27] S. Sagadevan , K.Pal, Z.Z.Chowdhury, M.E.Hoque: Mater. Res. Express4 (2017) 075025. 10.1088/2053-1591/aa77b5Suche in Google Scholar
[28] J. Smith , H.P.J.Wijn: Ferrite, Philips Technical Library, London, (1959).Suche in Google Scholar
[29] H. Nathani , S.Gubbala, R.D.K.Misra: Mater. Sci. Eng.B 121 (2005) 126. 10.1016/j.physb.2003.12.017.Suche in Google Scholar
[30] Y.K. Jun , S.B.Lee, M.Kim, S.H.Honga, J.W.Kim, K.H.Kim: J. Mater. Res.22 (2007) 3397. 10.1557/JMR.2007.0421Suche in Google Scholar
[31] M.C. Dimri , A.Verma, S.C.Kashyap, D.C.Dube, O.P.Thakur, C.Prakash: Mater. Sci. Eng.B 42 (2006) 133. 10.1016/j.mseb.2006.04.043Suche in Google Scholar
[32] S.E. Shirsath , B.G.Toksha, K.M.Jadhav: Mater. Chem. Phys.117 (2009) 163. 10.1016/j.matchemphys.2009.05.027Suche in Google Scholar
[33] C.G. Koops . Phys. Rev.83 (1951) 121. 10.1103/PhysRev.83.121Suche in Google Scholar
[34] J.C. Maxwell : Electricity and Magnetism, Oxford University Press, London, (1973).Suche in Google Scholar
[35] K.M. Batoo , S.Kumar, C.G.Lee, Alimuddin: Curr. Appl. Phys.9 (2009) 826–832. 10.1016/j.cap.2008.08.001Suche in Google Scholar
© 2020, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News