Compressive properties and energy absorption response of cBN added Al composite foams
-
Bilge Yaman Islak
Abstract
In this study, pure Al foam and 2, 5, 10 wt.% cubic boron nitride Al composite foams were manufactured to reveal the effects of cubic boron nitride addition on the properties of Al foam materials. Cellular morphology investigations and quasi-static compression test results were correlated with the effect of foaming agent behavior, compacting pressure, amount of ceramic addition, and compressive properties. The cubic boron nitride reinforced Al foams exhibited superior compressive properties and energy absorption behavior. The compressive properties were enhanced by increasing the cubic boron nitride content and compacting pressure. The maximum mechanical properties were achieved in 10 wt.% cubic boron nitride aluminum composite foams. The results revealed that these composite foams are possibly a candidate for specific high technology applications with high mechanical properties.
References
[1] A. Hassani , A.Habibolahzadeh, H.Bafti: Mater. Des.40 (2012) 510. 10.1016/j.matdes.2012.04.024Suche in Google Scholar
[2] S.M. Hosseini , A.Habibolahzadeh, V.Králík, V.Petráňová, J.Němeček: Mater. Sci. Eng.A 680 (2017) 157. 10.1016/j.msea.2016.10.091Suche in Google Scholar
[3] N. Mahmutyazicioglu , O.Albayrak, M.Ipekoglu: J. Mater. Res.28 (2013) 2509. 10.1557/jmr.2013.187Suche in Google Scholar
[4] A. Li , H.Xu, L.Geng, B.Li, Z.Tan, W.Ren: Trans. Non-ferrous Met. Soc. China22 (2012) 33. 10.1016/S1003-6326(12)61680-XSuche in Google Scholar
[5] S. Yu , Y.Luo, J.Liu: Mater. Sci. Eng.A 487 (2008) 394. 10.1016/j.msea.2007.11.025Suche in Google Scholar
[6] O. Prakash , H.Sang, J.D.Embury: Mater. Sci. Eng.A 199 (1995) 195. 10.1016/0921-5093(94)09708-9Suche in Google Scholar
[7] M. Alizadeh , M.Mirzaei-Aliabadi: Mater. Des.35 (2012) 419. 10.1016/j.matdes.2011.09.059Suche in Google Scholar
[8] A. Daoud : J Alloys Compd.486 (2009) 597. 10.1016/j.jallcom.2009.07.013Suche in Google Scholar
[9] Y.C. Li , J.Y.Xiong, J.G.Lin, M.Forrest, P.D.Hodgson, C.E.Wen: Mater. Sci. Forum31 (2007) 52.Suche in Google Scholar
[10] L. Vel , G.Demazeau, J.Etourneau: Mater. Sci. Eng.B 10 (1991) 149. 10.1016/0921-5107(91)90121-BSuche in Google Scholar
[11] S. Elbir , S.Yilmaz, A.K.Toksoy, M.Guden, I.W.Hall: J. Mater. Sci.38 (2003) 4745. 10.1023/A:1027427102837Suche in Google Scholar
[12] H. Bafti , A.Habibolahzadeh: Mater. Des.31 (2010) 4122. 10.1016/j.matdes.2010.04.038Suche in Google Scholar
[13] S.S. Vidyawathi , R.Amaresh, L.N.Satapathy: Bull. Mater. Sci.25 (2002) 569. 10.1007/BF02710553Suche in Google Scholar
[14] I.D. Giovannelli Maizoa , A.P.Luza, C.Pagliosab, V.C.Pandolfelli: Ceram. Int.43 (2017) 10207. 10.1016/j.ceramint.2017.05.047Suche in Google Scholar
[15] E. Gunay : Turkish J. Eng. Env. Sci.35 (2011) 83. 10.3906/muh-1008-14Suche in Google Scholar
[16] ASTM E9–89a(2000), Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature (Withdrawn 2009), ASTM International, West Conshohocken, PA (2000) 200.Suche in Google Scholar
[17] W. Deqing , S.Ziyuan: Mater. Sci. Eng.A 361 (2003) 45. 10.1016/S0921-5093(03)00557-4Suche in Google Scholar
[18] M. Malekjafarian , S.K.Sadrnezhaad: Mater. Des.42 (2012) 8. 10.1016/j.matdes.2012.05.036Suche in Google Scholar
[19] H.I. Bakan , D.Heaney, R.M.German: Powder Metall.44 (2001) 235. 10.1179/003258901666392Suche in Google Scholar
[20] H.I. Bakan : Scripta Mater.55 (2006) 203. 10.1016/j.scriptamat.2006.03.039Suche in Google Scholar
[21] J. Qi , W.Chen, H.Wang, Y.Wang, L.Li, H.L.W.Chan: Sensor Actuat A-PHYS116 (2004) 215. 10.1016/S0924-4247(04)00267-5Suche in Google Scholar
[22] J. Cao , C.Li: Int. J. Appl. Ceram. Technol.12 (3) (2015) 652. 10.1111/ijac.12185Suche in Google Scholar
[23] D.P. Mondal , M.D.Goel, S.Das: Mater. Sci. Eng.A 507 (2009) 102. 10.1016/j.msea.2009.01.019Suche in Google Scholar
[24] B. Soni , S.Biswas: Mater. Today2 (2015) 1886–1891. 10.1016/j.matpr.2015.07.140Suche in Google Scholar
[25] Y.J. Yang , F.S.Han, D.K.Yang, K.Zheng, Mater. Sci. Technol.23 (2007) 502–504. 10.1179/174328407X161114Suche in Google Scholar
[26] L.J. Gibson , M.F.Ashby, Cellular Solids, Structure and Properties, 2nd ed., Cambridge University Press, ISBN: 9780521495608 (1997) 510. 10.1017/CBO9781139878326Suche in Google Scholar
[27] A.K. Kaw , Mechanics of Composite Materials, 2nd ed., CRC Press, Boca Raton ISBN: 9780849313431 (1997) 352.Suche in Google Scholar
[28] D.P. Papadopoulos , I.C.Konstantinidis, N.Papanastasiou, S.Skolianos, H.Lefakis, D.N.Tsipas: Mater. Lett.58 (2004) 2574. 10.1016/j.matlet.2004.03.004Suche in Google Scholar
[29] J.R. Davis , ASM Specialty Handbook: Tool Materials, ASM International Handbook Committee ISBN: 978-0-87170-545-7 (1995) 501.Suche in Google Scholar
© 2020, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system
- Compressive properties and energy absorption response of cBN added Al composite foams
- Deformation characteristics of Cu-30 % Zn alloy subjected to dynamic equal channel angular pressing (DECAP)
- Stress-based forming limit diagrams (SFLD) considering strain rate effect and ductile damage phenomenon
- Processing and properties of ultrafine-grained Mg-3Al-1Zn magnesium alloy microtubes fabricated via isothermal hot microforming of SPD processed precursors
- The effect of in-situ formed TiB2 particles on microstructural and mechanical properties of laser melted copper alloy
- Nanoindentation study on Al86Ni8Y6 glassy alloy synthesized via mechanical alloying and spark plasma sintering
- Synthesis of nanosized cadmium ferrite and assaying its magnetic and dielectric properties by analytical and physical techniques
- BN nanosheet modified SnO materials for enhancing photocatalytic properties
- Preparation of salt microparticles via the anti-solvent recrystallization process
- Short Communications
- CVD grown graphene on commercial and electroplated Cu substrates: Raman spectroscopy analysis
- DGM News
- DGM News