Startseite Technik Compressive properties and energy absorption response of cBN added Al composite foams
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Compressive properties and energy absorption response of cBN added Al composite foams

  • Bilge Yaman Islak
Veröffentlicht/Copyright: 31. Januar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, pure Al foam and 2, 5, 10 wt.% cubic boron nitride Al composite foams were manufactured to reveal the effects of cubic boron nitride addition on the properties of Al foam materials. Cellular morphology investigations and quasi-static compression test results were correlated with the effect of foaming agent behavior, compacting pressure, amount of ceramic addition, and compressive properties. The cubic boron nitride reinforced Al foams exhibited superior compressive properties and energy absorption behavior. The compressive properties were enhanced by increasing the cubic boron nitride content and compacting pressure. The maximum mechanical properties were achieved in 10 wt.% cubic boron nitride aluminum composite foams. The results revealed that these composite foams are possibly a candidate for specific high technology applications with high mechanical properties.


Correspondence address, Assist. Prof. Dr. Bilge Yaman Islak, Eskisehir Osmangazi University, Department of Metallurgical & Materials Engineering, Meselik Campus, TR-26480 Eskisehir, Turkey. Tel.: +90 222 2393750/3686, E-mail:

References

[1] A. Hassani , A.Habibolahzadeh, H.Bafti: Mater. Des.40 (2012) 510. 10.1016/j.matdes.2012.04.024Suche in Google Scholar

[2] S.M. Hosseini , A.Habibolahzadeh, V.Králík, V.Petráňová, J.Němeček: Mater. Sci. Eng.A 680 (2017) 157. 10.1016/j.msea.2016.10.091Suche in Google Scholar

[3] N. Mahmutyazicioglu , O.Albayrak, M.Ipekoglu: J. Mater. Res.28 (2013) 2509. 10.1557/jmr.2013.187Suche in Google Scholar

[4] A. Li , H.Xu, L.Geng, B.Li, Z.Tan, W.Ren: Trans. Non-ferrous Met. Soc. China22 (2012) 33. 10.1016/S1003-6326(12)61680-XSuche in Google Scholar

[5] S. Yu , Y.Luo, J.Liu: Mater. Sci. Eng.A 487 (2008) 394. 10.1016/j.msea.2007.11.025Suche in Google Scholar

[6] O. Prakash , H.Sang, J.D.Embury: Mater. Sci. Eng.A 199 (1995) 195. 10.1016/0921-5093(94)09708-9Suche in Google Scholar

[7] M. Alizadeh , M.Mirzaei-Aliabadi: Mater. Des.35 (2012) 419. 10.1016/j.matdes.2011.09.059Suche in Google Scholar

[8] A. Daoud : J Alloys Compd.486 (2009) 597. 10.1016/j.jallcom.2009.07.013Suche in Google Scholar

[9] Y.C. Li , J.Y.Xiong, J.G.Lin, M.Forrest, P.D.Hodgson, C.E.Wen: Mater. Sci. Forum31 (2007) 52.Suche in Google Scholar

[10] L. Vel , G.Demazeau, J.Etourneau: Mater. Sci. Eng.B 10 (1991) 149. 10.1016/0921-5107(91)90121-BSuche in Google Scholar

[11] S. Elbir , S.Yilmaz, A.K.Toksoy, M.Guden, I.W.Hall: J. Mater. Sci.38 (2003) 4745. 10.1023/A:1027427102837Suche in Google Scholar

[12] H. Bafti , A.Habibolahzadeh: Mater. Des.31 (2010) 4122. 10.1016/j.matdes.2010.04.038Suche in Google Scholar

[13] S.S. Vidyawathi , R.Amaresh, L.N.Satapathy: Bull. Mater. Sci.25 (2002) 569. 10.1007/BF02710553Suche in Google Scholar

[14] I.D. Giovannelli Maizoa , A.P.Luza, C.Pagliosab, V.C.Pandolfelli: Ceram. Int.43 (2017) 10207. 10.1016/j.ceramint.2017.05.047Suche in Google Scholar

[15] E. Gunay : Turkish J. Eng. Env. Sci.35 (2011) 83. 10.3906/muh-1008-14Suche in Google Scholar

[16] ASTM E9–89a(2000), Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature (Withdrawn 2009), ASTM International, West Conshohocken, PA (2000) 200.Suche in Google Scholar

[17] W. Deqing , S.Ziyuan: Mater. Sci. Eng.A 361 (2003) 45. 10.1016/S0921-5093(03)00557-4Suche in Google Scholar

[18] M. Malekjafarian , S.K.Sadrnezhaad: Mater. Des.42 (2012) 8. 10.1016/j.matdes.2012.05.036Suche in Google Scholar

[19] H.I. Bakan , D.Heaney, R.M.German: Powder Metall.44 (2001) 235. 10.1179/003258901666392Suche in Google Scholar

[20] H.I. Bakan : Scripta Mater.55 (2006) 203. 10.1016/j.scriptamat.2006.03.039Suche in Google Scholar

[21] J. Qi , W.Chen, H.Wang, Y.Wang, L.Li, H.L.W.Chan: Sensor Actuat A-PHYS116 (2004) 215. 10.1016/S0924-4247(04)00267-5Suche in Google Scholar

[22] J. Cao , C.Li: Int. J. Appl. Ceram. Technol.12 (3) (2015) 652. 10.1111/ijac.12185Suche in Google Scholar

[23] D.P. Mondal , M.D.Goel, S.Das: Mater. Sci. Eng.A 507 (2009) 102. 10.1016/j.msea.2009.01.019Suche in Google Scholar

[24] B. Soni , S.Biswas: Mater. Today2 (2015) 18861891. 10.1016/j.matpr.2015.07.140Suche in Google Scholar

[25] Y.J. Yang , F.S.Han, D.K.Yang, K.Zheng, Mater. Sci. Technol.23 (2007) 502504. 10.1179/174328407X161114Suche in Google Scholar

[26] L.J. Gibson , M.F.Ashby, Cellular Solids, Structure and Properties, 2nd ed., Cambridge University Press, ISBN: 9780521495608 (1997) 510. 10.1017/CBO9781139878326Suche in Google Scholar

[27] A.K. Kaw , Mechanics of Composite Materials, 2nd ed., CRC Press, Boca Raton ISBN: 9780849313431 (1997) 352.Suche in Google Scholar

[28] D.P. Papadopoulos , I.C.Konstantinidis, N.Papanastasiou, S.Skolianos, H.Lefakis, D.N.Tsipas: Mater. Lett.58 (2004) 2574. 10.1016/j.matlet.2004.03.004Suche in Google Scholar

[29] J.R. Davis , ASM Specialty Handbook: Tool Materials, ASM International Handbook Committee ISBN: 978-0-87170-545-7 (1995) 501.Suche in Google Scholar

Received: 2019-05-16
Accepted: 2019-10-24
Published Online: 2020-01-31
Published in Print: 2020-02-12

© 2020, Carl Hanser Verlag, München

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111858/html?lang=de
Button zum nach oben scrollen