Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
-
Maximilian Rank
, Peter Franke und Hans Jürgen Seifert
Abstract
The Al–Fe system has been modeled and optimized with the CALPHAD approach. Heat capacity values from three intermetallic phases (stoichiometric compositions: Al2Fe, Al5Fe2 and Al13Fe4) were experimentally determined and implemented into the Gibbs energy descriptions, thus the estimated heat capacity from Neumann–Kopp is substituted. From these results together with new literature values, a revised dataset of the binary Al–Fe system is presented. Based on the Compound Energy Formalism, the homogeneity range of the Al2Fe and Al5Fe2 phase is represented using a two-sublattice model. In addition, the Al8Fe5 phase has been modeled with a four-sublattice model and the number of sublattices of the Al13Fe4 phase has been changed from a three-sublattice model to a two-sublattice model. The critically assessed parameters provide a consistent thermodynamic dataset and represent most of the relevant thermochemical data as well as phase diagram data within their experimental uncertainties.
References
[1] M.Palm: Int. J. Mater. Res.100 (2009) 3. 10.3139/146.110056Suche in Google Scholar
[2] A.Bahadur, O.N.Mohanty: Mater. Trans.32 (1991) 1053. 10.2320/matertrans1989.32.1053Suche in Google Scholar
[3] S.Kobayashi, T.Yakou: Mater. Sci. Eng.A338 (2002) 44. 10.1016/S0921-5093(02)00053-9Suche in Google Scholar
[4] M.Pouranvari: Mater. Sci. Technol.72 (2017) 1. 10.1080/02670836.2017.1334310Suche in Google Scholar
[5] B.Sundman, I.Ohnuma, N.Dupin, U.R.Kattner, S.G.Fries: Acta Mat.57 (2009) 2896. 10.1016/j.actamat.2009.02.046Suche in Google Scholar
[6] M.H.Jacobs, R.Schmid-Fetzer: Calphad33 (2009) 170. 10.1016/j.calphad.2008.07.010Suche in Google Scholar
[7] Z.Du, C.Guo, C.Li, W.Zhang: J. Phase Equilib. Diffus.30 (2009) 487. 10.1007/s11669-009-9564-4Suche in Google Scholar
[8] M.Seiersten, in: I.Ansara, A.T.Dinsdale, M.H.Rand (Eds.), COST 507: Thermochemical database for light metal alloys (Volume 2). Office for Official Publications of the European Communities, Luxembourg (1998).Suche in Google Scholar
[9] W.Zheng, S.He, M.Selleby, Y.He, L.Li, X.-G.Lu, J.Ågren: Calphad58 (2017) 34. 10.1016/j.calphad.2017.05.003Suche in Google Scholar
[10] J.Miettinen, S.Louhenkilpi, G.Vassilev: J. Phase Equilib. Diffus.36 (2015) 317. 10.1007/s11669-015-0383-5Suche in Google Scholar
[11] A.T.Phan, M.-K.Paek, Y.-B.Kang: Acta Mat.79 (2014) 1. 10.1016/j.actamat.2014.07.006Suche in Google Scholar
[12] D.Connétable, J.Lacaze, P.Maugis, B.Sundman: Calphad32 (2008) 361. 10.1016/j.calphad.2008.01.002Suche in Google Scholar
[13] M.Rank, P.Gotcu, P.Franke, H.J.Seifert: Intermetallics94 (2018) 73. 10.1016/j.intermet.2017.12.015Suche in Google Scholar
[14] K.Han, I.Ohnuma, R.Kainuma: J. Alloys Compd.668 (2016) 97. 10.1016/j.jallcom.2016.01.215Suche in Google Scholar
[15] X.Li, A.Scherf, M.Heilmaier, F.Stein: J. Phase Equilib. Diffus.37 (2016) 162. 10.1007/s11669-015-0446-7Suche in Google Scholar
[16] T.Zienert, O.Fabrichnaya: J. Alloys Compd.743 (2018) 795. 10.1016/j.jallcom.2018.01.316Suche in Google Scholar
[17] F.Stein, M.Palm: Int. J. Mater. Res.98 (2007) 580. 10.3139/146.101512Suche in Google Scholar
[18] T.Zienert, A.Leineweber, O.Fabrichnaya: J. Alloys Compd.725 (2017) 848. 10.1016/j.jallcom.2017.07.199Suche in Google Scholar
[19] T.Zienert, L.Amirkhanyan, J.Seidel, R.Wirnata, T.Weissbach, T.Gruber, O.Fabrichnaya, J.Kortus: Intermetallics77 (2016) 14. 10.1016/j.intermet.2016.07.002Suche in Google Scholar
[20] J.Chi, X.Zheng, S.Y.Rodriguez, Y.Li, W.Gou, V.Goruganti, K.D.D.Rathnayaka, J.H.Ross: Phys. Rev. B82 (2010) 174419. 10.1103/PhysRevB.82.174419Suche in Google Scholar
[21] M.Turchanin, N.Kolchugina, A.Watson, A.Kroupa, in: G.Effenberg (Ed.), Al-Fe Binary Phase Diagram Evaluation. MSI Eureka in SpringerMaterials (2013).Suche in Google Scholar
[22] U.R.Kattner, B.P.Burton, in H.Okamoto (Ed.), Phase Diagrams of Binary Iron Alloys. ASM International, Materials Park, OH (1993) 12.Suche in Google Scholar
[23] A.Bourbia, M.Draissia, H.Bedboudi, S.Boulkhessaim, M.Y.Debili: J. Xray Sci. Technol.18 (2010) 201. 10.3233/XST-2010-0245Suche in Google Scholar PubMed
[24] A.Yelsukova, Z.-A.Li, M.Acet, M.Spasova, M.Farle: Journal of Physics: Conference Series200 (2010) 72109. 10.1088/1742-6596/200/7/072109Suche in Google Scholar
[25] G.Inden, W.Pepperhoff: Z. Metallkde.81 (1990) 770.Suche in Google Scholar
[26] D.Rafaja, P.Kratochvíl, J.Kopeček: Scr. Mater.34 (1996) 1387. 10.1016/1359-6462(96)00009-7Suche in Google Scholar
[27] I.Chumak, K.W.Richter, H.Ehrenberg: Acta Cryst.66 (2010) 87. 10.1107/S0108270110033202Suche in Google Scholar PubMed
[28] U.Burkhardt, Y.Grin, M.Ellner, K.Peters: Acta Cryst.50 (1994) 313. 10.1107/S0108768193013989Suche in Google Scholar
[29] H.Becker, L.Amirkhanyan, J.Kortus, A.Leineweber: J. Alloys Compd.721 (2017) 691. 10.1016/j.jallcom.2017.05.336Suche in Google Scholar
[30] N.L.Okamoto, J.Okumura, M.Higashi, H.Inui: Acta Mat.129 (2017) 290. 10.1016/j.actamat.2017.02.060Suche in Google Scholar
[31] P.J.Black: Acta Cryst.8 (1955) 43. 10.1107/S0365110X55000108Suche in Google Scholar
[32] P.J.Black: Acta Cryst.8 (1955) 175. 10.1107/S0365110X55000108Suche in Google Scholar
[33] F.Stein, S.C.Vogel, M.Eumann, M.Palm: Intermetallics18 (2010) 150. 10.1016/j.intermet.2009.07.006Suche in Google Scholar
[34] S.C.Vogel, F.Stein, M.Palm: Applied Physics A99 (2010) 607. 10.1007/s00339-010-5619-ySuche in Google Scholar
[35] W.Gąsior, A.Dębski, Z.Moser: Intermetallics24 (2012) 99. 10.1016/j.intermet.2012.02.001Suche in Google Scholar
[36] J.Breuer, A.Grün, F.Sommer, E.J.Mittemeijer: Metall. Mater. Trans. B32 (2001) 913. 10.1007/s11661-001-0348-7Suche in Google Scholar
[37] O.Kubaschewski, W.A.Dench: Acta Metall.3 (1955) 339. 10.1016/0001-6160(55)90038-9Suche in Google Scholar
[38] W.Oelsen, W.Middel: Mitteilungen aus dem Kaiser-Wilhelm-Institut für Eisenforschung zu Düsseldorf19 (1937) 1.Suche in Google Scholar
[39] K.Rzyman, Z.Moser, A.P.Miodownik, L.Kaufmann, R.E.Watson, M.Weinert: Calphad24 (2000) 309. 10.1016/S0364-5916(01)00007-4Suche in Google Scholar
[40] W.Biltz: Z. Metallkde.29 (1937) 73.Suche in Google Scholar
[41] Y.Feutelais, B.Legendre, M.Guymont, P.Ochin: J. Alloys Compd.322 (2001) 184. 10.1016/S0925-8388(01)01175-6Suche in Google Scholar
[42] H.Kleykamp, H.Glasbrenner: Z. Metallkd.88 (1997) 230.Suche in Google Scholar
[43] S.V.Radcliff, B.L.Avebach, M.Cohen: Acta Metall.9 (1961) 169. 10.1016/0001-6160(61)90066-9Suche in Google Scholar
[44] J.Eldridge, K.L.Komarek: Trans. Metall. Soc. AIME230 (1964) 226.Suche in Google Scholar
[45] L.Bencze, D.D.Raj, D.Kath, W.A.Oates, J.Herrmann, L.Singheiser: Metall. Mater. Trans A34 (2003) 2409. 10.1007/s11661-003-0001-8Suche in Google Scholar
[46] D.Raj, L.Bencze, D.Kath, W.A.Oates, J.Herrmann, L.Singheiser, K.Hilpert: Intermetallics11 (2003) 1119. 10.1016/S0966-9795(03)00149-3Suche in Google Scholar
[47] E.Illeková, J.C.Gachon, J.J.Kuntz: Proceedings of Thermophysics (2002) 71.Suche in Google Scholar
[48] J.Chipman, T.P.Floridis: Acta Metall.3 (1955) 456. 10.1016/0001-6160(55)90135-8Suche in Google Scholar
[49] E.Ichise, T.Yamauchi, T.Mori: Tetsu To Hagane63 (1977) 417. 10.2355/tetsutohagane1955.63.11_S417Suche in Google Scholar
[50] N.S.Jacobsen: High Mat. Sci.35 (1996) 1.10.1021/bi952626lSuche in Google Scholar
[51] N.S.Jacobsen, G.M.Mehrotra: Metall. Trans. B24 (1993) 481. 10.1007/BF02657335Suche in Google Scholar
[52] H.Mitani, H.Nagai: J. Jpn. Inst. Met.32 (1968) 752. 10.2320/jinstmet1952.32.5_478Suche in Google Scholar
[53] G.R.Belton, R.J.Fruehan: Trans. Metall. Soc. AIME245 (1969) 113.Suche in Google Scholar
[54] A.Coskun, J.F.Elliott: Trans. Metall. Soc. AIME242 (1968) 253.Suche in Google Scholar
[55] G.I.Batalin, E.A.Beloborodova, V.A.Stukalo, L.V.Goncharuk: Russ. J. Phy. Chem.45 (1971) 1139.Suche in Google Scholar
[56] F.Woolley, J.F.Elliott: Trans. Metall. Soc. AIME239 (1967) 1872.Suche in Google Scholar
[57] M.S.Petrushevskiy, Y.O.Esin, P.V.Gel'd, V.M.Sandakov: Russ. Metall.6 (1972) 149.Suche in Google Scholar
[58] C.-H.Zhang, S.Huang, J.Shen, N.-X.Chen: Intermetallics52 (2014) 86. 10.1016/j.intermet.2014.04.002Suche in Google Scholar
[59] P.G.Gonzales-Ormeño, H.M.Petrilli: Calphad26 (2002) 573. 10.1016/S0364-5916(02)80009-8Suche in Google Scholar
[60] M.Mihalkovič, M.Widom: Phys. Rev. B85 (2012) 1. 10.1103/PhysRevB.85.014113Suche in Google Scholar
[61] D.Connétable, P.Maugis: Intermetallics16 (2008) 345. 10.1016/j.intermet.2007.09.011Suche in Google Scholar
[62] P.Maugis, J.Lacaze, R.Besson, J.Morillo: Metall. Mater. Trans A37 (2006) 3397. 10.1007/s11661-006-1032-8Suche in Google Scholar
[63] F.Lechermann, M.Fähnle, J.M.Sanchez: Intermetallics13 (2005) 1096. 10.1016/j.intermet.2005.02.009Suche in Google Scholar
[64] X.Li, M.Palm, A.Scherf, D.Janda, M.Heilmaier, F.Stein: MRS Proceedings1760 (2015) mrsf14–1760-yy04–09. 10.1557/opl.2014.965Suche in Google Scholar
[65] S.Balanetskyy, B.Grushko, T.Y.Velinkanova: Metallofiz. Noveishie Tekhnol.26 (2004) 407.Suche in Google Scholar
[66] W.Oscarsoon, W.B.Hutchinson, H.-E.Ekström, D.Dickson, J.Simensen, G.M.Raynaud: Z. Metallkd.79 (1988) 600.Suche in Google Scholar
[67] A.Griger, A.Lendvai, V.Stefániay, T.Turmezey: Mater. Sci. Forum13–14 (1987) 331. 10.4028/www.scientific.net/MSF.13-14.331Suche in Google Scholar
[68] E.Wachtel, J.Bahle: Z. Metallkd.78 (1987) 229.Suche in Google Scholar
[69] A.Lendvai: J. Mater. Sci Lett.5 (1986) 1219. 10.1007/BF01729370Suche in Google Scholar
[70] A.Lendvai: Thermochim. Acta93 (1985) 681. 10.1016/0040-6031(85)85171-6Suche in Google Scholar
[71] W.Köster, T.Gödecke: Z. Metallkd.71 (1980) 765.Suche in Google Scholar
[72] E.Schürmann, H.-P.Hagen: Arch. Eisenhuettenwes58 (1980) 325. 10.1002/srin.198004848Suche in Google Scholar
[73] F.Honda, K.Hirokawa: Z. Anal. Chem.262 (1972) 170. 10.1007/BF00437635Suche in Google Scholar
[74] M.Nishio, S.Nasu, Y.Murakami: J. Jpn. Inst. Met.34 (1970) 1173. 10.2320/jinstmet1952.34.12_1173Suche in Google Scholar
[75] K.Hirano, A.Hishinuma: J. Jpn. Inst. Met.32 (1968) 516. 10.2320/jinstmet1952.32.3_234Suche in Google Scholar
[76] P.Rocquet, G.Jegaden, J.C.Petit: Tetso To Hagane205 (1967) 437.Suche in Google Scholar
[77] P.Rocquet, J.C.Petir, G.Urbain: Tetso To Hagane209 (1971) 69.Suche in Google Scholar
[78] R.G.Davies: J. Phys. Chem. Solids24 (1963) 985. 10.1016/0022-3697(63)90002-7Suche in Google Scholar
[79] J.R.Lee: Tetso To Hagane194 (1960) 222.10.1007/BF00668954Suche in Google Scholar
[80] A.G.Lesnik, Y.P.Skvorchuk: Dopovidi Akademii Nauk Urkains'koi RSR10 (1960) 1408.Suche in Google Scholar
[81] E.Gebhardt, W.Obrowski: Z. Erzbergbau und Metallhuettenwes.44 (1953) 154.Suche in Google Scholar
[82] C.Crussard, F.Aubertin: Rev. Metall.46 (1949) 661. 10.1051/metal/194946020061Suche in Google Scholar
[83] J.K.Edgar: Trans. Am. Inst. Min. Metall Eng180 (1949).Suche in Google Scholar
[84] A.Osawa, T.Murata: J. Japan Inst. Met. Mater.5 (1941) 259. 10.2320/jinstmet1937.5.7_259Suche in Google Scholar
[85] A.Roth: Z. Metallkde.31 (1939) 299.10.1515/ijmr-1939-310902Suche in Google Scholar
[86] F.Wever, A.Müller: Z. Anorg. Allg. Chem.192 (1930) 337. 10.1002/zaac.19301920125Suche in Google Scholar
[87] A.G.CGwyer, H.Phillips: J. I. Met.38 (1927) 29.Suche in Google Scholar
[88] M.Isawa, T.Murakami: Kinzoku no Kenkyu4 (1927) 467.Suche in Google Scholar
[89] N.Kurnakow, G.Urasow, A.Grigorjew: Z. Anorg. Allg. Chem.125 (1922) 207. 10.1002/zaac.19221250111Suche in Google Scholar
[90] A.G.C.Gwyer: Z. Anorg. Chem.57 (1908) 113. 10.1002/zaac.19080570106Suche in Google Scholar
[91] H.Becker, A.Leineweber: Intermetallics93 (2018) 251. 10.1016/j.intermet.2017.09.021Suche in Google Scholar
[92] A.T.Dinsdale: Calphad15 (1991) 317. 10.1016/0364-5916(91)90030-NSuche in Google Scholar
[93] O.Redlich, A.T.Kister: Ind. Eng Chem. Res.40 (1948) 345. 10.1021/ie50458a036Suche in Google Scholar
[94] M.Hillert, L.-I.Staffansson: Acta Chem. Scand.24 (1970) 3618. 10.3891/acta.chem.scand.24-3618Suche in Google Scholar
[95] B.Sundman, J.Ågren: J. Phys. Chem. Solids42 (1981) 297. 10.1016/0022-3697(81)90144-XSuche in Google Scholar
[96] J.Grin, U.Burkhardt, M.Ellner: Cryst. Mater.209 (1994) 479.Suche in Google Scholar
[97] D.Pavlyuchkov, B.Przepiórzyński, W.Kowalski, T.Velikanova, B.Grushko: Calphad45 (2014) 194. 10.1016/j.calphad.2013.12.007Suche in Google Scholar
[98] V.G.Khoruzha, K.E.Kornienko, D.V.Pavlyuchkov, B.Grushko, T.Y.Velikanova: Powder Metall. Met. Ceram.50 (2011) 217. 10.1007/s11106-011-9321-1Suche in Google Scholar
[99] V.G.Khoruzha, K.E.Kornienko, D.V.Pavlyuchkov, B.Grushko, T.Y. Velikanova Powder Metall. Met. Ceram.50 (2011) 83. 10.1007/s11106-011-9306-0Suche in Google Scholar
[100] I.I.Kornilov, V.S.Mikheeva, O.K.Konenko-Gracheva, R.S.Mints: Izvestija Sektora Fiziko-chimiceskogo Analiza, Moskova, Akad. Nauk SSSR16 (1946) 100.Suche in Google Scholar
[101] V.T.Witusiewicz, A.A.Bondar, U.Hecht, T.Velikanova: J. Alloys Compd.644 (2015) 939. 10.1016/j.jallcom.2015.04.231Suche in Google Scholar
[102] J.Braun, M.Ellner, B.Predel: J. Alloys Compd.183 (1992) 444. 10.1016/0925-8388(92)90766-3Suche in Google Scholar
[103] B.Hu, W.-W.Zhang, Y.Peng, Y.Du, S.Liu, Y.Zhang: Thermochim. Acta561 (2013) 77. 10.1016/j.tca.2013.03.033Suche in Google Scholar
[104] G.Inden: Physica B103 (1981) 82. 10.1016/0378-4363(81)91004-4Suche in Google Scholar
[105] M.Hillert, M.Jarl: Calphad2 (1978) 227. 10.1016/0364-5916(78)90011-1Suche in Google Scholar
[106] N.Dupin, I.Ansara: Z. Metallkd.90 (1999) 76.Suche in Google Scholar
[107] Thermo-Calc, Version 2017a, Thermo-Calc Software, Sweden.Suche in Google Scholar
[108] E.Schürmann, C.Zellerfeld, H.-P.Kaiser: Arch. Eisenhuettenwes52 (1981) 127. 10.1002/srin.198104895Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
- A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
- Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
- Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
- Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
- Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
- Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
- Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
- Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
- Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
- Short Communications
- Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
- Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
- A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
- Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
- Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
- Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
- Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
- Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
- Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
- Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
- Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
- Short Communications
- Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
- Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
- DGM News
- DGM News