Startseite Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD

  • Maximilian Rank , Peter Franke und Hans Jürgen Seifert
Veröffentlicht/Copyright: 17. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Al–Fe system has been modeled and optimized with the CALPHAD approach. Heat capacity values from three intermetallic phases (stoichiometric compositions: Al2Fe, Al5Fe2 and Al13Fe4) were experimentally determined and implemented into the Gibbs energy descriptions, thus the estimated heat capacity from Neumann–Kopp is substituted. From these results together with new literature values, a revised dataset of the binary Al–Fe system is presented. Based on the Compound Energy Formalism, the homogeneity range of the Al2Fe and Al5Fe2 phase is represented using a two-sublattice model. In addition, the Al8Fe5 phase has been modeled with a four-sublattice model and the number of sublattices of the Al13Fe4 phase has been changed from a three-sublattice model to a two-sublattice model. The critically assessed parameters provide a consistent thermodynamic dataset and represent most of the relevant thermochemical data as well as phase diagram data within their experimental uncertainties.


Correspondence address, Maximilian Rank, Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany, Tel.: +49 721 608 28542, E-mail: , Web: http://www.iam.kit.edu/awp/index.php

References

[1] M.Palm: Int. J. Mater. Res.100 (2009) 3. 10.3139/146.110056Suche in Google Scholar

[2] A.Bahadur, O.N.Mohanty: Mater. Trans.32 (1991) 1053. 10.2320/matertrans1989.32.1053Suche in Google Scholar

[3] S.Kobayashi, T.Yakou: Mater. Sci. Eng.A338 (2002) 44. 10.1016/S0921-5093(02)00053-9Suche in Google Scholar

[4] M.Pouranvari: Mater. Sci. Technol.72 (2017) 1. 10.1080/02670836.2017.1334310Suche in Google Scholar

[5] B.Sundman, I.Ohnuma, N.Dupin, U.R.Kattner, S.G.Fries: Acta Mat.57 (2009) 2896. 10.1016/j.actamat.2009.02.046Suche in Google Scholar

[6] M.H.Jacobs, R.Schmid-Fetzer: Calphad33 (2009) 170. 10.1016/j.calphad.2008.07.010Suche in Google Scholar

[7] Z.Du, C.Guo, C.Li, W.Zhang: J. Phase Equilib. Diffus.30 (2009) 487. 10.1007/s11669-009-9564-4Suche in Google Scholar

[8] M.Seiersten, in: I.Ansara, A.T.Dinsdale, M.H.Rand (Eds.), COST 507: Thermochemical database for light metal alloys (Volume 2). Office for Official Publications of the European Communities, Luxembourg (1998).Suche in Google Scholar

[9] W.Zheng, S.He, M.Selleby, Y.He, L.Li, X.-G.Lu, J.Ågren: Calphad58 (2017) 34. 10.1016/j.calphad.2017.05.003Suche in Google Scholar

[10] J.Miettinen, S.Louhenkilpi, G.Vassilev: J. Phase Equilib. Diffus.36 (2015) 317. 10.1007/s11669-015-0383-5Suche in Google Scholar

[11] A.T.Phan, M.-K.Paek, Y.-B.Kang: Acta Mat.79 (2014) 1. 10.1016/j.actamat.2014.07.006Suche in Google Scholar

[12] D.Connétable, J.Lacaze, P.Maugis, B.Sundman: Calphad32 (2008) 361. 10.1016/j.calphad.2008.01.002Suche in Google Scholar

[13] M.Rank, P.Gotcu, P.Franke, H.J.Seifert: Intermetallics94 (2018) 73. 10.1016/j.intermet.2017.12.015Suche in Google Scholar

[14] K.Han, I.Ohnuma, R.Kainuma: J. Alloys Compd.668 (2016) 97. 10.1016/j.jallcom.2016.01.215Suche in Google Scholar

[15] X.Li, A.Scherf, M.Heilmaier, F.Stein: J. Phase Equilib. Diffus.37 (2016) 162. 10.1007/s11669-015-0446-7Suche in Google Scholar

[16] T.Zienert, O.Fabrichnaya: J. Alloys Compd.743 (2018) 795. 10.1016/j.jallcom.2018.01.316Suche in Google Scholar

[17] F.Stein, M.Palm: Int. J. Mater. Res.98 (2007) 580. 10.3139/146.101512Suche in Google Scholar

[18] T.Zienert, A.Leineweber, O.Fabrichnaya: J. Alloys Compd.725 (2017) 848. 10.1016/j.jallcom.2017.07.199Suche in Google Scholar

[19] T.Zienert, L.Amirkhanyan, J.Seidel, R.Wirnata, T.Weissbach, T.Gruber, O.Fabrichnaya, J.Kortus: Intermetallics77 (2016) 14. 10.1016/j.intermet.2016.07.002Suche in Google Scholar

[20] J.Chi, X.Zheng, S.Y.Rodriguez, Y.Li, W.Gou, V.Goruganti, K.D.D.Rathnayaka, J.H.Ross: Phys. Rev. B82 (2010) 174419. 10.1103/PhysRevB.82.174419Suche in Google Scholar

[21] M.Turchanin, N.Kolchugina, A.Watson, A.Kroupa, in: G.Effenberg (Ed.), Al-Fe Binary Phase Diagram Evaluation. MSI Eureka in SpringerMaterials (2013).Suche in Google Scholar

[22] U.R.Kattner, B.P.Burton, in H.Okamoto (Ed.), Phase Diagrams of Binary Iron Alloys. ASM International, Materials Park, OH (1993) 12.Suche in Google Scholar

[23] A.Bourbia, M.Draissia, H.Bedboudi, S.Boulkhessaim, M.Y.Debili: J. Xray Sci. Technol.18 (2010) 201. 10.3233/XST-2010-0245Suche in Google Scholar PubMed

[24] A.Yelsukova, Z.-A.Li, M.Acet, M.Spasova, M.Farle: Journal of Physics: Conference Series200 (2010) 72109. 10.1088/1742-6596/200/7/072109Suche in Google Scholar

[25] G.Inden, W.Pepperhoff: Z. Metallkde.81 (1990) 770.Suche in Google Scholar

[26] D.Rafaja, P.Kratochvíl, J.Kopeček: Scr. Mater.34 (1996) 1387. 10.1016/1359-6462(96)00009-7Suche in Google Scholar

[27] I.Chumak, K.W.Richter, H.Ehrenberg: Acta Cryst.66 (2010) 87. 10.1107/S0108270110033202Suche in Google Scholar PubMed

[28] U.Burkhardt, Y.Grin, M.Ellner, K.Peters: Acta Cryst.50 (1994) 313. 10.1107/S0108768193013989Suche in Google Scholar

[29] H.Becker, L.Amirkhanyan, J.Kortus, A.Leineweber: J. Alloys Compd.721 (2017) 691. 10.1016/j.jallcom.2017.05.336Suche in Google Scholar

[30] N.L.Okamoto, J.Okumura, M.Higashi, H.Inui: Acta Mat.129 (2017) 290. 10.1016/j.actamat.2017.02.060Suche in Google Scholar

[31] P.J.Black: Acta Cryst.8 (1955) 43. 10.1107/S0365110X55000108Suche in Google Scholar

[32] P.J.Black: Acta Cryst.8 (1955) 175. 10.1107/S0365110X55000108Suche in Google Scholar

[33] F.Stein, S.C.Vogel, M.Eumann, M.Palm: Intermetallics18 (2010) 150. 10.1016/j.intermet.2009.07.006Suche in Google Scholar

[34] S.C.Vogel, F.Stein, M.Palm: Applied Physics A99 (2010) 607. 10.1007/s00339-010-5619-ySuche in Google Scholar

[35] W.Gąsior, A.Dębski, Z.Moser: Intermetallics24 (2012) 99. 10.1016/j.intermet.2012.02.001Suche in Google Scholar

[36] J.Breuer, A.Grün, F.Sommer, E.J.Mittemeijer: Metall. Mater. Trans. B32 (2001) 913. 10.1007/s11661-001-0348-7Suche in Google Scholar

[37] O.Kubaschewski, W.A.Dench: Acta Metall.3 (1955) 339. 10.1016/0001-6160(55)90038-9Suche in Google Scholar

[38] W.Oelsen, W.Middel: Mitteilungen aus dem Kaiser-Wilhelm-Institut für Eisenforschung zu Düsseldorf19 (1937) 1.Suche in Google Scholar

[39] K.Rzyman, Z.Moser, A.P.Miodownik, L.Kaufmann, R.E.Watson, M.Weinert: Calphad24 (2000) 309. 10.1016/S0364-5916(01)00007-4Suche in Google Scholar

[40] W.Biltz: Z. Metallkde.29 (1937) 73.Suche in Google Scholar

[41] Y.Feutelais, B.Legendre, M.Guymont, P.Ochin: J. Alloys Compd.322 (2001) 184. 10.1016/S0925-8388(01)01175-6Suche in Google Scholar

[42] H.Kleykamp, H.Glasbrenner: Z. Metallkd.88 (1997) 230.Suche in Google Scholar

[43] S.V.Radcliff, B.L.Avebach, M.Cohen: Acta Metall.9 (1961) 169. 10.1016/0001-6160(61)90066-9Suche in Google Scholar

[44] J.Eldridge, K.L.Komarek: Trans. Metall. Soc. AIME230 (1964) 226.Suche in Google Scholar

[45] L.Bencze, D.D.Raj, D.Kath, W.A.Oates, J.Herrmann, L.Singheiser: Metall. Mater. Trans A34 (2003) 2409. 10.1007/s11661-003-0001-8Suche in Google Scholar

[46] D.Raj, L.Bencze, D.Kath, W.A.Oates, J.Herrmann, L.Singheiser, K.Hilpert: Intermetallics11 (2003) 1119. 10.1016/S0966-9795(03)00149-3Suche in Google Scholar

[47] E.Illeková, J.C.Gachon, J.J.Kuntz: Proceedings of Thermophysics (2002) 71.Suche in Google Scholar

[48] J.Chipman, T.P.Floridis: Acta Metall.3 (1955) 456. 10.1016/0001-6160(55)90135-8Suche in Google Scholar

[49] E.Ichise, T.Yamauchi, T.Mori: Tetsu To Hagane63 (1977) 417. 10.2355/tetsutohagane1955.63.11_S417Suche in Google Scholar

[50] N.S.Jacobsen: High Mat. Sci.35 (1996) 1.10.1021/bi952626lSuche in Google Scholar

[51] N.S.Jacobsen, G.M.Mehrotra: Metall. Trans. B24 (1993) 481. 10.1007/BF02657335Suche in Google Scholar

[52] H.Mitani, H.Nagai: J. Jpn. Inst. Met.32 (1968) 752. 10.2320/jinstmet1952.32.5_478Suche in Google Scholar

[53] G.R.Belton, R.J.Fruehan: Trans. Metall. Soc. AIME245 (1969) 113.Suche in Google Scholar

[54] A.Coskun, J.F.Elliott: Trans. Metall. Soc. AIME242 (1968) 253.Suche in Google Scholar

[55] G.I.Batalin, E.A.Beloborodova, V.A.Stukalo, L.V.Goncharuk: Russ. J. Phy. Chem.45 (1971) 1139.Suche in Google Scholar

[56] F.Woolley, J.F.Elliott: Trans. Metall. Soc. AIME239 (1967) 1872.Suche in Google Scholar

[57] M.S.Petrushevskiy, Y.O.Esin, P.V.Gel'd, V.M.Sandakov: Russ. Metall.6 (1972) 149.Suche in Google Scholar

[58] C.-H.Zhang, S.Huang, J.Shen, N.-X.Chen: Intermetallics52 (2014) 86. 10.1016/j.intermet.2014.04.002Suche in Google Scholar

[59] P.G.Gonzales-Ormeño, H.M.Petrilli: Calphad26 (2002) 573. 10.1016/S0364-5916(02)80009-8Suche in Google Scholar

[60] M.Mihalkovič, M.Widom: Phys. Rev. B85 (2012) 1. 10.1103/PhysRevB.85.014113Suche in Google Scholar

[61] D.Connétable, P.Maugis: Intermetallics16 (2008) 345. 10.1016/j.intermet.2007.09.011Suche in Google Scholar

[62] P.Maugis, J.Lacaze, R.Besson, J.Morillo: Metall. Mater. Trans A37 (2006) 3397. 10.1007/s11661-006-1032-8Suche in Google Scholar

[63] F.Lechermann, M.Fähnle, J.M.Sanchez: Intermetallics13 (2005) 1096. 10.1016/j.intermet.2005.02.009Suche in Google Scholar

[64] X.Li, M.Palm, A.Scherf, D.Janda, M.Heilmaier, F.Stein: MRS Proceedings1760 (2015) mrsf141760-yy04–09. 10.1557/opl.2014.965Suche in Google Scholar

[65] S.Balanetskyy, B.Grushko, T.Y.Velinkanova: Metallofiz. Noveishie Tekhnol.26 (2004) 407.Suche in Google Scholar

[66] W.Oscarsoon, W.B.Hutchinson, H.-E.Ekström, D.Dickson, J.Simensen, G.M.Raynaud: Z. Metallkd.79 (1988) 600.Suche in Google Scholar

[67] A.Griger, A.Lendvai, V.Stefániay, T.Turmezey: Mater. Sci. Forum13–14 (1987) 331. 10.4028/www.scientific.net/MSF.13-14.331Suche in Google Scholar

[68] E.Wachtel, J.Bahle: Z. Metallkd.78 (1987) 229.Suche in Google Scholar

[69] A.Lendvai: J. Mater. Sci Lett.5 (1986) 1219. 10.1007/BF01729370Suche in Google Scholar

[70] A.Lendvai: Thermochim. Acta93 (1985) 681. 10.1016/0040-6031(85)85171-6Suche in Google Scholar

[71] W.Köster, T.Gödecke: Z. Metallkd.71 (1980) 765.Suche in Google Scholar

[72] E.Schürmann, H.-P.Hagen: Arch. Eisenhuettenwes58 (1980) 325. 10.1002/srin.198004848Suche in Google Scholar

[73] F.Honda, K.Hirokawa: Z. Anal. Chem.262 (1972) 170. 10.1007/BF00437635Suche in Google Scholar

[74] M.Nishio, S.Nasu, Y.Murakami: J. Jpn. Inst. Met.34 (1970) 1173. 10.2320/jinstmet1952.34.12_1173Suche in Google Scholar

[75] K.Hirano, A.Hishinuma: J. Jpn. Inst. Met.32 (1968) 516. 10.2320/jinstmet1952.32.3_234Suche in Google Scholar

[76] P.Rocquet, G.Jegaden, J.C.Petit: Tetso To Hagane205 (1967) 437.Suche in Google Scholar

[77] P.Rocquet, J.C.Petir, G.Urbain: Tetso To Hagane209 (1971) 69.Suche in Google Scholar

[78] R.G.Davies: J. Phys. Chem. Solids24 (1963) 985. 10.1016/0022-3697(63)90002-7Suche in Google Scholar

[79] J.R.Lee: Tetso To Hagane194 (1960) 222.10.1007/BF00668954Suche in Google Scholar

[80] A.G.Lesnik, Y.P.Skvorchuk: Dopovidi Akademii Nauk Urkains'koi RSR10 (1960) 1408.Suche in Google Scholar

[81] E.Gebhardt, W.Obrowski: Z. Erzbergbau und Metallhuettenwes.44 (1953) 154.Suche in Google Scholar

[82] C.Crussard, F.Aubertin: Rev. Metall.46 (1949) 661. 10.1051/metal/194946020061Suche in Google Scholar

[83] J.K.Edgar: Trans. Am. Inst. Min. Metall Eng180 (1949).Suche in Google Scholar

[84] A.Osawa, T.Murata: J. Japan Inst. Met. Mater.5 (1941) 259. 10.2320/jinstmet1937.5.7_259Suche in Google Scholar

[85] A.Roth: Z. Metallkde.31 (1939) 299.10.1515/ijmr-1939-310902Suche in Google Scholar

[86] F.Wever, A.Müller: Z. Anorg. Allg. Chem.192 (1930) 337. 10.1002/zaac.19301920125Suche in Google Scholar

[87] A.G.CGwyer, H.Phillips: J. I. Met.38 (1927) 29.Suche in Google Scholar

[88] M.Isawa, T.Murakami: Kinzoku no Kenkyu4 (1927) 467.Suche in Google Scholar

[89] N.Kurnakow, G.Urasow, A.Grigorjew: Z. Anorg. Allg. Chem.125 (1922) 207. 10.1002/zaac.19221250111Suche in Google Scholar

[90] A.G.C.Gwyer: Z. Anorg. Chem.57 (1908) 113. 10.1002/zaac.19080570106Suche in Google Scholar

[91] H.Becker, A.Leineweber: Intermetallics93 (2018) 251. 10.1016/j.intermet.2017.09.021Suche in Google Scholar

[92] A.T.Dinsdale: Calphad15 (1991) 317. 10.1016/0364-5916(91)90030-NSuche in Google Scholar

[93] O.Redlich, A.T.Kister: Ind. Eng Chem. Res.40 (1948) 345. 10.1021/ie50458a036Suche in Google Scholar

[94] M.Hillert, L.-I.Staffansson: Acta Chem. Scand.24 (1970) 3618. 10.3891/acta.chem.scand.24-3618Suche in Google Scholar

[95] B.Sundman, J.Ågren: J. Phys. Chem. Solids42 (1981) 297. 10.1016/0022-3697(81)90144-XSuche in Google Scholar

[96] J.Grin, U.Burkhardt, M.Ellner: Cryst. Mater.209 (1994) 479.Suche in Google Scholar

[97] D.Pavlyuchkov, B.Przepiórzyński, W.Kowalski, T.Velikanova, B.Grushko: Calphad45 (2014) 194. 10.1016/j.calphad.2013.12.007Suche in Google Scholar

[98] V.G.Khoruzha, K.E.Kornienko, D.V.Pavlyuchkov, B.Grushko, T.Y.Velikanova: Powder Metall. Met. Ceram.50 (2011) 217. 10.1007/s11106-011-9321-1Suche in Google Scholar

[99] V.G.Khoruzha, K.E.Kornienko, D.V.Pavlyuchkov, B.Grushko, T.Y. Velikanova Powder Metall. Met. Ceram.50 (2011) 83. 10.1007/s11106-011-9306-0Suche in Google Scholar

[100] I.I.Kornilov, V.S.Mikheeva, O.K.Konenko-Gracheva, R.S.Mints: Izvestija Sektora Fiziko-chimiceskogo Analiza, Moskova, Akad. Nauk SSSR16 (1946) 100.Suche in Google Scholar

[101] V.T.Witusiewicz, A.A.Bondar, U.Hecht, T.Velikanova: J. Alloys Compd.644 (2015) 939. 10.1016/j.jallcom.2015.04.231Suche in Google Scholar

[102] J.Braun, M.Ellner, B.Predel: J. Alloys Compd.183 (1992) 444. 10.1016/0925-8388(92)90766-3Suche in Google Scholar

[103] B.Hu, W.-W.Zhang, Y.Peng, Y.Du, S.Liu, Y.Zhang: Thermochim. Acta561 (2013) 77. 10.1016/j.tca.2013.03.033Suche in Google Scholar

[104] G.Inden: Physica B103 (1981) 82. 10.1016/0378-4363(81)91004-4Suche in Google Scholar

[105] M.Hillert, M.Jarl: Calphad2 (1978) 227. 10.1016/0364-5916(78)90011-1Suche in Google Scholar

[106] N.Dupin, I.Ansara: Z. Metallkd.90 (1999) 76.Suche in Google Scholar

[107] Thermo-Calc, Version 2017a, Thermo-Calc Software, Sweden.Suche in Google Scholar

[108] E.Schürmann, C.Zellerfeld, H.-P.Kaiser: Arch. Eisenhuettenwes52 (1981) 127. 10.1002/srin.198104895Suche in Google Scholar

Received: 2018-06-28
Accepted: 2018-11-19
Published Online: 2019-05-17
Published in Print: 2019-05-15

© 2019, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
  5. A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
  6. Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
  7. Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
  8. Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
  9. Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
  10. Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
  11. Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
  12. Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
  13. Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
  14. Short Communications
  15. Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
  16. Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
  17. DGM News
  18. DGM News
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111765/html?lang=de
Button zum nach oben scrollen