Startseite Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy

  • Juan Ma , Desheng Yan , Lijian Rong und Yiyi Li
Veröffentlicht/Copyright: 17. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effects of different double ageing processes on the mechanical properties and microstructural evolution in the 1460 alloy were investigated. The corresponding microstructure and mechanical properties of the heat-treated specimens were studied by means of transmission electron microscopy, differential scanning calorimetry, hardness testing and tensile testing. The results show that the elongation of two-step aged (130 °C/84 h + 160 °C/24 h) samples can be increased to 8 % with a minor decrease in tensile strength (450 MPa). Throughout the two-step ageing process, the precipitation behaviour of the alloy exhibited the following characteristics: the δ′ phase formed at lower temperature dissolved into the matrix instead of coarsening and becoming over-aged at the beginning of the second ageing step; finely distributed θ′(Al2Cu) and δ′(Al3Li) at a steady state were obtained, resulting in a significant improvement in tensile strength; and the peak ductility occurred with the precipitation of T1(Al2CuLi) and consumption of δ′(Al3Li), as small δ′ particles caused a co-planar slip, resulting in lower ductility.


Correspondence address, Prof. Dr. L.J. Rong, Division of materials for special environments, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China, E-mail: , Tel: +86-24-23971979, Fax: +86-24-23978883

References

[1] N. EswaraPrasad, A.A.Gokhale, P. RamaRao: Sadhana28 (2003) 209246. 10.1007/BF02717134Suche in Google Scholar

[2] S.Ahmadi, H.Arabi, A.Shokuhfar: J. Alloys Compd.484 (2009) 9094. 10.1016/j.jallcom./2009.03.188Suche in Google Scholar

[3] P.Sainfort, P.Guyot, in: Aluminum-lithium alloys III. London (1986), C.Baker, P.J.Gregson, S.J.Harris, C.J.Peel (Eds.).Suche in Google Scholar

[4] H.K.Hardy, J.M.Silcock: J. Inst. Met.84 (1955–56) 423.10.1111/j.1751-0813.1955.tb05511.xSuche in Google Scholar

[5] E.A.StarkeJr., T.H.SandersJr., I.G.Palmer: J. Metals33 (1981) 24. 10.1007/BF03339517Suche in Google Scholar

[6] P.J.Gregson, H.M.Flower: Acta Metall.33 (1985) 527. 10.1016/0001-6160(85)90095-1Suche in Google Scholar

[7] D.J.Waldron, W.F.Bozich: 6074498, US006074498A (2000).Suche in Google Scholar

[8] J.Mizera, K.J.Kurzydlowski: Scr. Mater.45 (2001) 801. 10.1016/S1359-6462(01)01099-5Suche in Google Scholar

[9] R.K.Bird, D.L.Dicus, J.N.Fridlyander: Mater. Sci. Forum907 (2000) 331337. 10.4028/MSF.331-337.907Suche in Google Scholar

[10] A.Dupasquier, A.Somoza, R.N.Lumley: Mater. Forum28 (2004) 1135.Suche in Google Scholar

[11] S.Ahmadi, H.Arabi, A.Shokuhfar: J. Mater. Sci. Technol.26 (2010) 10781082. 10.1016/S1005-0302(11)60004-2Suche in Google Scholar

[12] S.Katsikis, B.Noble, S.J.Harris: Mater. Sci. Eng. A485 (2008) 613620. 10.1016/j.msea.2007.10.020Suche in Google Scholar

[13] J.Ma, D.S.Yan, L.J.Rong, Y.Y.Li: Acta Metall. Sin. (Engl. Lett.)28 (2015). 454459. 10.1016/j.pnsc.2014.01.003Suche in Google Scholar

[14] R.Yoshimura, T.J.Konno, E.Abe, K.Hiraga: Acta Mater.51 (2003) 28912903. 10.1016/S1359-6454(03)00104-6Suche in Google Scholar

[15] T.H.Courtney: Mechanical behavior of materials. New York (1990), KeithBowman (Ed.).Suche in Google Scholar

[16] S.Ahmadi, A.Shokuhfar: Def. Diff. Forum14 (2008) 273276. 10.4028/DDF.273-276.536Suche in Google Scholar

[17] S.Ahmadi, H.Arabi, A.Shokuhfar: J. Alloys Compd.,90 (2009) 484. 10.1016/j.jallcom.2009.03.188Suche in Google Scholar

[18] K.Mahalingam, B.P.Gu, G.L.Liedl, T.H.SandersJr: Acta Mater.35 (1985) 483. 10.1016/0001-6160(87)90254-9Suche in Google Scholar

[19] J.W.Martin: Micromechanisms in particle-hardened alloys, Cambridge University Press, U.K (1980), R.W.Cahn, M.W.Thompson, I.M.Ward (Eds.).Suche in Google Scholar

Received: 2018-08-04
Accepted: 2018-11-26
Published Online: 2019-05-17
Published in Print: 2019-05-15

© 2019, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
  5. A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
  6. Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
  7. Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
  8. Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
  9. Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
  10. Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
  11. Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
  12. Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
  13. Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
  14. Short Communications
  15. Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
  16. Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
  17. DGM News
  18. DGM News
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111763/html?lang=de
Button zum nach oben scrollen