A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
-
Rameshwari Naorem
, Anshul Gupta , Sukriti Mantri , Gurjyot Sethi , K. V. ManiKrishna , Raj Pala , Kantesh Balani und Anandh Subramaniam
Abstract
The decrease in the X-ray diffraction Bragg peak intensity from concentrated multicomponent alloys (CMA), has been modeled in literature akin to the effect of temperature. In the current work, experiments and computations are used to comprehend the effect of atomic disorder in CMA on the Bragg peaks of powder diffraction patterns. Ni–Co–Fe–Cr–Mn and Cu–Ni–Co–Fe–V have been used as model systems for the study. It is proved that the intensity decrease is not insignificant, but is not anomalous either. A recipe is evolved to compare the Bragg peak intensities across the alloys of a CMA. It is demonstrated that it is incorrect to model the effect of an increase in atomic disorder in a CMA, as a temperature effect. A ‘good measure’ of lattice distortion is identified and further it is established that full width half maximum is a good measure of the bond length distortion. It is demonstrated that the true strain due to bond length distortion is of significantly lower magnitude than that given by a priori measures of lattice strain. In the scheme of categorization of defects in crystals, it is argued that CMA is a separate class (as distinct from type-I and type-II defects); which should be construed as a defected solid, rather than a defect in a solid.
References
[1] A.Guinier: X-Ray diffraction in crystals, imperfect crystals, and amorphous bodies. Translated into English by: LorrainP, Sainte-MarieLD. San Francisco, CA: W. H. Freeman and Co. (1963). ISBN: 0716703076 9780716703075.Suche in Google Scholar
[2] M.A.Krivoglaz: Theory of X-Ray and thermal-Neutron scattering by real crystals. New York, NY: Plenum Press (1969). ISBN: 978–1–4899–5584–5.Suche in Google Scholar
[3] B.E.Warren: X-Ray diffraction. New York, NY: Addison-Wesley Pub. Co. (1969). ISBN: 978–0–486–66317–3.Suche in Google Scholar
[4] B.S.Murty, J.W.Yeh, S.Ranganathan: High-Entropy Alloys. London, UK: Elsevier Inc. (2014). ISBN: 9780128002513.10.1016/B978-0-12-800251-3.00002-XSuche in Google Scholar
[5] M.C.Gao, J.W.Yeh, P.K.Liaw, Y.Zhang, eds.: High-entropy alloys: fundamentals and applications. Switzlerland: Springer (2016). ISBN: 978–3–319–27013–5. 10.1007/978-3-319-27013-5Suche in Google Scholar
[6] D.Miracle, O.Senkov: Acta Mater.122 (2017) 448–551. 10.1016/j.actamat.2016.08.081Suche in Google Scholar
[7] J.W.Yeh, Y.L.Chen, S.J.Lin, S.K.Chen: Mater. Sci. Forum.560 (2007) 1–9. 10.4028/www.scientific.net/MSF.560.1Suche in Google Scholar
[8] Y.Zhang, T.T.Zuo, Z.Tang, M.C.Gao, K.A.Dahmen, P.K.Liaw, Z.P.Lu: Prog. Mater Sci.61 (2014) 1–93. 10.1016/j.pmatsci.2013.10.001Suche in Google Scholar
[9] A.K.Singh, A.Subramaniam: J. Alloys Compd.587 (2014) 113–119. 10.1016/j.jallcom.2013.10.133Suche in Google Scholar
[10] L.I.Anmin, X.Zhang: Acta Metall. Sin. Engl.22 (2009) 219–224. 10.1016/S1006-7191(08)60092-7Suche in Google Scholar
[11] A.K.Singh, N.Kumar, A.Dwivedi, A.Subramaniam: Intermetallics.53 (2014) 112–119. 10.1016/j.intermet.2014.04.019Suche in Google Scholar
[12] L.R.Owen, E.J.Pickering, H.Y.Playford, H.J.Stone, M.G.Tucker, N.G.Jones: Acta Mater.122 (2017) 11–18. 10.1016/j.actamat.2016.09.032Suche in Google Scholar
[13] J.W.Yeh, S.Y.Chang, Y.D.Hong, S.K.Chen, S.J.Lin: Mater. Chem. Phys.103 (2007) 41–46. 10.1016/j.matchemphys.2007.01.003Suche in Google Scholar
[14] E.J.Mittemeijer, U.Welzel: Modern Diffraction Methods, Wiley-VCH, Weinheim (2013). ISBN: 978 3 527 32279 4. 10.1002/9783527649884.ch4Suche in Google Scholar
[15] B.Feng, M.Widom: Mater. Chem. Phys.210 (2018) 309–314. 10.1016/j.matchemphys.2017.06.038Suche in Google Scholar
[16] I.Toda-Caraballo, P.E.Rivera-Diaz-del-Castillo: Intermetallics.71 (2016) 76–87. 10.1016/j.intermet.2015.12.011Suche in Google Scholar
[17] Y.Waseda: Anomalous X-Ray scattering for materials characterization: atomic-Scale structure determination. Berlin: Springer (2002). ISBN: 978–3–540–46008–4.10.1007/3-540-46008-XSuche in Google Scholar
[18] K.Huang: Proc. R. Soc. A190 (1947) 102–117. 20255303; 10.1098/rspa.1947.0064Suche in Google Scholar PubMed
[19] W.W.Webb: J. Appl. Phys.33 (1962) 3546–3552. 10.1063/1.1702444Suche in Google Scholar
[20] F.H.Herbstein, B.S.Borie, B.L.Averbach: Acta Crystallogr.9 (1956) 466–471. 10.1107/S0365110X56001261Suche in Google Scholar
[21] R.A.Coyle, B.Gale: Acta Crystallogr.8 (1955) 105–111. 10.1107/S0365110X55000406Suche in Google Scholar
[22] R.W.James: The optical principles of the diffraction of X-Rays. London, Bell (1962). ISBN: 0918024234 9780918024237.Suche in Google Scholar
[23] S.Dietrich, W.Fenzl: Phys. Rev. B.39 (1989) 8873. 10.1103/PhysRevB.39.8873Suche in Google Scholar PubMed
[24] T.R.Welberry, B.D.Butler: Chem. Rev. 957 (1995) 2369–2403. 10.1021/cr00039a005Suche in Google Scholar
[25] W.Schweika: Disordered alloys: diffuse scattering and Monte Carlo simulations. Berlin: Springer (1998). 10.1007/BFb0110656Suche in Google Scholar
[26] B.D.Cullity, S.R.Stock: Elements of X-Ray diffraction. Harlow: Pearson education limited (2014). ISBN: 978–1–292–04054–7.Suche in Google Scholar
[27] M.Calamiotou, D.Lampakis, N.D.Zhigadlo, S.Katrych, J.Karpinski, A.Fitch, P.Tsiaklagkanos, E.Liarokapis: Physica C: Superconductivity and its Applications.527 (2016) 55–62. 10.1016/j.physc.2016.05.019Suche in Google Scholar
[28] J.W.Yeh: JOM67 (2015) 2254–2261. 10.1007/s11837-015-1583-5Suche in Google Scholar
[29] T.Egami, S.J.Billinge: Underneath the Bragg Peaks, Structural Analysis of Complex Materials. Oxford, UK: Pergamon Materials Series, Elsevier Ltd. (2003). ISBN: 9780080971339. 10.1016/S1470-1804(03)80002-0Suche in Google Scholar
[30] S.Guo, C.Ng, Z.Wang, C.T.Liu: J Alloys Compd.583 (2014) 410–413. 10.1016/j.jallcom.2013.08.213Suche in Google Scholar
[31] H.S.Oh, D.Ma, G.P.Leyson, B.Grabowski, E.S.Park, F.Körmann, D.Raabe: Entropy.18 (2016) 321. 10.3390/e18090321Suche in Google Scholar
[32] N.L.Okamoto, K.Yuge, K.Tanaka, H.Inui, E.P.George: AIP Advances.6 (2016) 125008. 10.1063/1.4971371Suche in Google Scholar
[33] H.Song, F.Tian, Q.M.Hu, L.Vitos, Y.Wang, J.Shen, N.Chen: Phys. Rev. Mater.1 (2017) 023404. 10.1103/PhysRevMaterials.1.023404Suche in Google Scholar
[34] T.R.Welberry, T.Weber: Crystallogr. Rev.22 (2016) 2–78. 10.1080/0889311X.2015.1046853Suche in Google Scholar
[35] J.G.Kirkwood: J. Chem. Phys.2 (1938) 70–75. 10.1063/1.1750205Suche in Google Scholar
[36] B.E.Warren, B.L.Averbach, B.W.Roberts: J. Appl. Phys.22 (1951) 1493–1496. 10.1063/1.1699898Suche in Google Scholar
[37] B.Borie: Acta Crystallogr.10 (1957) 89–96. 10.1107/S0365110X57000274Suche in Google Scholar
[38] B.Borie: Acta Crystallogr.12 (1959) 280–282. 10.1107/S0365110X5900086XSuche in Google Scholar
[39] A.Guinier: Bulletin de la Société française de minéralogie.77 (1954) 680–710. DOI:.Suche in Google Scholar
[40] B.Cantor, I.T.Chang, P.Knight, A.J.Vincent: Mater Sci Eng A.375 (2004) 213–218. 10.1016/j.msea.2003.10.257Suche in Google Scholar
[41] Y.Zhang, Y.J.Zhou, J.P.Lin, G.L.Chen, P.K.Liaw: Adv Eng Mater.10 (2008) 534–538. 10.1002/adem.200700240Suche in Google Scholar
[42] Y.F.Ye, C.T.Liu, Y.Yang: Acta Mater.94 (2015) 152–161. 10.1016/j.actamat.2015.04.051Suche in Google Scholar
[43] E.A.Brandes, G.B.Brook, C.J.Smithells: Smithells metals reference book.: Butterworth-Heinemann, Oxford (1992). ISBN: 0 7506 7509 8/81–81474–48–1.Suche in Google Scholar
[44] V.M.Goldschmidt: Z. Phys. Chem.133 (1928) 397–419. DOI:.10.1515/zpch-1928-13327Suche in Google Scholar
[45] www.webelements.com.Suche in Google Scholar
[46] J.C.Slater: J. Chem. Phys.41 (1964) 3199–3204. 10.1063/1.1725697Suche in Google Scholar
[47] D.D.Pollock: Physical properties of materials for engineers. Florida, FL: CRC Press (1993). ISBN: 9780849342370 – CAT# 4237.Suche in Google Scholar
[48] S.Enzo, G.Fagherazzi, A.Benedetti, S.Polizzi: J. Appl. Crystallogr.21 (1988) 536–542. 10.1107/S0021889888006612Suche in Google Scholar
[49] T.H.De Keijser, J.I.Langford, E.J.Mittemeijer, A.B.Vogels: J. Appl. Crystallogr.15 (1982) 308–314. 10.1107/S0021889882012035Suche in Google Scholar
[50] A.J.Wilson: Nature193 (1962) 568–569. 10.1038/193568a0Suche in Google Scholar
[51] N.C.Halder, C.N.Wagner: Adv. X-Ray Anal. (1966) 91–102. 10.1007/978-1-4684-7633-0_8Suche in Google Scholar
[52] Y.Zhao, J.Zhang: J. Appl. Crystallogr.41 (2008) 1095–1108. 10.1107/S0021889808031762Suche in Google Scholar
[53] http://www.crystalimpact.com/match/.Suche in Google Scholar
[54] W.A.Rachinger: J. Sci. Instrum.25 (1948) 254. 10.1088/0950-7671/25/7/125Suche in Google Scholar
[55] A.R.Stokes: Proc. Phys. Soc.61 (1948) 382. 10.1088/0959-5309/61/4/311Suche in Google Scholar
[56] I.K.Robinson: Phys. Rev. B.33 (1986) 3830. 10.1103/PhysRevB.33.3830Suche in Google Scholar
[57] P.Debye: Annalen der Physik.351 (1915) 809–23. 10.1002/andp.19153510606Suche in Google Scholar
[58] MATLAB 2016, https://in.mathworks.com/products/matlab.html.Suche in Google Scholar
[59] R.W.Cheary, A.Coelho: J. Appl. Crystallogr.25 (1992) 109–121. 10.1107/S0021889891010804Suche in Google Scholar
[60] S.J.Plimpton: Comput. Phys.117 (1995) 1–9. 10.1006/jcph.1995.1039Suche in Google Scholar
[61] C.A.Becker, F.Tavazza, Z.T.Trautt, R.A.de Macedo: Curr. Opin. Solid State Mater. Sci.17 (2013) 277–83. 10.1016/j.cossms.2013.10.001Suche in Google Scholar
[62] S.M.Foiles, M.I.Baskes, M.S.Daw: Phys. Rev B.33 (1986) 7983. 10.1103/PhysRevB.33.7983Suche in Google Scholar
[63] C.Suryanarayana, M.G.Norton: X-Ray Diffraction A Practical Approach. New York, NY: Plenum Press (1998). 10.1007/978-1-4899-0148-4Suche in Google Scholar
[64] J.Gubicza, ed.: X-ray line profile analysis in materials science. Hershey, PA: IGI Global (2014). 24481239; 10.4018/978-1-4666-5852-3Suche in Google Scholar
[65] G.U.Sheng, C.T.Liu: Prog. Nat. Sci.: Mater. Int.21 (2011) 433–446. 10.1016/S1002-0071(12)60080-XSuche in Google Scholar
[66] W.B.Pearson: The crystal chemistry and physics of metals and alloys, New York, NY: John Wiley & Sons, Inc (1972). DOI:. 10.1016/0003-4916(72)90240-0Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
- A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
- Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
- Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
- Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
- Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
- Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
- Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
- Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
- Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
- Short Communications
- Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
- Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
- A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
- Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
- Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
- Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
- Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
- Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
- Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
- Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
- Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
- Short Communications
- Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
- Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
- DGM News
- DGM News