Startseite Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing

  • Francesco Del Re , Fabio Scherillo , Vincenzo Contaldi , Biagio Palumbo , Antonino Squillace , Pasquale Corrado und Paolo Di Petta
Veröffentlicht/Copyright: 17. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Additive manufacturing refers to a wide class of manufacturing processes based on the progressive building of functional parts through the addition of material layer upon layer. These technologies were first confined to prototyping, but the subsequent development of additive manufacturing processes for further materials, such as metals, has encouraged their worldwide industrial spread, from the biomedical field to the automotive and the aerospace industries. Additively manufactured parts are required to meet high and stable performance, at least comparable to that of conventional wrought materials, so as to comply with strict and well-defined international standards. This paper presents an investigation into the mechanical properties of AlSi10Mg parts produced by laser powder bed fusion technique, using different spatial orientations within the build volume. The effects of the part position and orientation on the static (tensile) properties of the produced parts were assessed by means of the two-way analysis of variance technique. The build angle was found to be the most effective parameter, while the variability ascribable to the effect of part position resulted mainly as physiological. The fatigue resistance showed a globally decreasing trend with increasing build angle.


Correspondence address, Francesco Del Re, University of Naples Federico II, Dept. of Industrial Engineering, 80, Piazzale Vincenzo Tecchio, 80125, Napoli, Italy, Tel: +39 081 76 82 185, Fax: +39 081 76 82 187, E-mail:

References

[1] ISO 17296–2:2015 – Additive manufacturing, General principles, Part 2: Overview of process categories and feedstock. International Organization for Standardization2015. ICS: 25.030.Suche in Google Scholar

[2] D.D.Gu, W.Meiners, K.Wissenbach, R.Poprawe: Int. Mater. Rev.57 (2012) 133. 10.1179/1743280411Y.0000000014Suche in Google Scholar

[3] J.Gardan: Int. J. Prod. Res.54 (2015) 3118. 10.1080/00207543.2015.1115909Suche in Google Scholar

[4] W.JSames, F.A.List, S.Pannala, R.R.Dehoff, S.S.Babu: Inter. Mater. Rev.61 (2016) 315. 10.1080/09506608.2015.1116649Suche in Google Scholar

[5] M. KhorramNiaki, F.Nonino: Int. J. Prod. Res.55 (2016) 1419. 10.1080/00207543.2016.1229064Suche in Google Scholar

[6] S.AKhairallah, A.T.Anderson, A.Rubenchik, W.E.King: Acta Mater.108 (2016) 36. 10.1016/j.actamat.2016.02.014Suche in Google Scholar

[7] D.Herzog, V.Seyda, E.Wycisk, C.Emmelmann: Acta Mater.117 (2016) 371. 10.1016/j.actamat.2016.07.019Suche in Google Scholar

[8] N.T.Aboulkhair, N.M.Everitt, I.Ashcroft, C.Tuck: Addit. Manuf.1–4 (2014) 77. 10.1016/j.addma.2014.08.001Suche in Google Scholar

[9] T.B.Sercombe, X.Li: Mater. Technol.31 (2016) 77. 10.1179/1753555715Y.0000000078Suche in Google Scholar

[10] N.Gardan, A.Schneider, J.Gardan: Comput.-Aided Des. Applic.13 (2016) 39. 10.1080/16864360.2015.1059192Suche in Google Scholar

[11] www.gpiprototype.com/files/dmls/Whitepaper%20-%20Mechanical%20Testing%20of%20DMLS%20Parts.pdf.Suche in Google Scholar

[12] L.Wang, X.Jiang, M.Guo, X.Zhu, B.Yan: Mater. Sci. Technol.33 (2017) 2274. 10.1080/02670836.2017.1398513Suche in Google Scholar

[13] T.M.Mower, M.J.Long: Mater. Sci. Eng., A651 (2016) 198. 10.1016/j.msea.2015.10.068Suche in Google Scholar

[14] D.Manfredi, F.Calignano, M.Krishnan, R.Canali, E.P.Ambrosio, E.Atzeni: Materials6 (2013) 856. 28809344; 10.3390/ma6030856Suche in Google Scholar PubMed PubMed Central

[15] E.O.Olakanmi, R.F.Cochrane, K.W.Dalgarno: J. Mater. Sci.74 (2015) 401. 10.1016/j.pmatsci.2015.03.002Suche in Google Scholar

[16] N.Read, W.Wang, K.Essa, M.M.Attallah: Mater. Des.65 (2015) 417. 10.1016/j.matdes.2014.09.044Suche in Google Scholar

[17] K.Kempen, L.Thijs, J. VanHumbeeck, J.P.Kruth: Physics Procedia39 (2012) 439. 10.1016/j.phpro.2012.10.059Suche in Google Scholar

[18] T.Kimura, T.Nakamoto: Mater. Des.89 (2016) 1294. 10.1016/j.matdes.2015.10.065Suche in Google Scholar

[19] I.Yadroitsev, L.Thivillon, P.Bertrand, I.Smurov: Appl. Surf. Sci.254 (2007) 980. 10.1016/j.apsusc.2007.08.046Suche in Google Scholar

[20] D.Buchbinder, W.Meiners, K.Wissenbach, R.Poprawe: J. Laser Appl.27 (2015) S29205. 10.2351/1.4906389Suche in Google Scholar

[21] D.Buchbinder, H.Schleifenbaum, S.Heidrich, W.Meiners, J.Bultmann: Physics Procedia12 (2011), 12, 271. 10.1016/j.phpro.2011.03.035Suche in Google Scholar

[22] E.Brandl, U.Heckenberger, V.Holzinger, D.Buchbinder: Mater. Des.349 (2012) 159. 10.1016/j.matdes.2011.07.067Suche in Google Scholar

[23] B.Palumbo, F. DelRe, M.Martorelli, A.Lanzotti, P.Corrado: Materials10 (2017) 144. 28772505; 10.3390/ma10020144Suche in Google Scholar PubMed PubMed Central

[24] F. DelRe, V.Contaldi, A.Astarita, B.Palumbo, A.Squillace, P.Corrado, P. DiPetta: Int. J. Adv. Manuf. Technol.97 (2018) 2231. 10.1007/s00170-018-2090-ySuche in Google Scholar

[25] B.Palumbo, R.Marrone, G. DeChiara, in: P.Erto (Ed.), Statistics for Innovation, Springer, Milan, Italy (2009). 10.1007/978-88-470-0815-1Suche in Google Scholar

[26] A.L.Cooke, J.A.Slotwinski (2012). 10.6028/NIST.IR.7873Suche in Google Scholar

[27] K.Kempen, L.Thijs, J. VanHumbeeck, J.P.Kruth: Mater. Sci. Technol.31 (2014) 917. 10.1179/1743284714Y.0000000702Suche in Google Scholar

[28] E.O.Olakanmi: J. Mater. Process. Technol.213 (2013) 1387. 10.1016/j.jmatprotec.2013.03.009Suche in Google Scholar

[29] EN ISO 6892–1:2016 – Metallic Materials, Tensile Testing, Part 1: Method of Test at Room Temperature. International Organization for Standardization2016. ICS: 77.040.10.Suche in Google Scholar

[30] ASTM E8/E8M–16a: Standard Test Methods for Tension Testing of Metallic Materials. ASTM International2016. 10.1520/E0008_E0008M-16ASuche in Google Scholar

[31] D.C.Montgomery, D.C. Design and Analysis of Experiments, John Wiley & Sons: Hoboken, NJ, USA (2005). ISBN: 0–471–31649–0.Suche in Google Scholar

[32] D.C.Montgomery, G.C.Runger: Applied Statistics and Probability for Engineers, John Wiley & Sons: Hoboken, NJ, USA (2003). ISBN: 0–471–20454–4.Suche in Google Scholar

[33] DIN EN 6072:2011 – Aerospace series, Metallic materials, Test methods, Constant amplitude fatigue testing. German institute for Standardization2011. www.beuth.de/en/standard/din-en-6072/140066421.Suche in Google Scholar

[34] ASTM E466–15: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM International2015. 10.1520/E0466-15Suche in Google Scholar

[35] ASTM E739–10(2015): Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (-N) Fatigue Data. ASTM International2015. 10.1520/E0739-10Suche in Google Scholar

[36] ASTM F1877–16: Standard Practice for Characterization of Particles. ASTM International2016. 10.1520/F1877-16Suche in Google Scholar

[37] ASTM B822–17: Standard Test Method for Particle Size Distribution of Metal Powders and Related Compounds by Light Scattering. ASTM International2017. 10.1520/B0822-17Suche in Google Scholar

[38] S.Greenland, S.J.Senn, K.J.Rothman, J.B.Carlin, C.Poole, S.N.Goodman, D.G.Altman: Eur. J. Epidemiol.31 (2016) 337. 27209009; 10.1007/s10654-016-0149-3Suche in Google Scholar PubMed PubMed Central

[39] F.Trevisan, F.Calignano, M.Lorusso, J.Pakkanen, A.Aversa, E.P.Ambrosio, M.Lombardi, P.Fino, D.Manfredi: Materials10 (2017) 76. 28772436; 10.3390/ma10010076Suche in Google Scholar PubMed PubMed Central

[40] K.G.Prashanth, S.Scudino, H.J.Klauss, K.B.Surreddi, L.Löber, Z.Wang, A.K.Chaubey, U.Kühn, J.Eckert: Mater. Sci. Eng., A590 (2014) 153. 10.1016/j.msea.2013.10.023Suche in Google Scholar

[41] DIN EN 1706:2013 – Aluminium and Aluminium alloys, Castings, Chemical composition and mechanical properties. German institute for Standardization2013. www.beuth.de/en/standard/din-en-1706/194230717.Suche in Google Scholar

Received: 2018-07-27
Accepted: 2018-10-29
Published Online: 2019-05-17
Published in Print: 2019-05-15

© 2019, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
  5. A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
  6. Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
  7. Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
  8. Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
  9. Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
  10. Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
  11. Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
  12. Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
  13. Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
  14. Short Communications
  15. Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
  16. Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
  17. DGM News
  18. DGM News
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111761/html?lang=de
Button zum nach oben scrollen