Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
-
Marzieh Ehsani
, Saman Safian , Mohammad Zakeri und Mohammad Reza Rahimipour
Abstract
In the present study, ZnSe ceramics were sintered at different temperatures in the range of 900 °C to 1 100 °C by spark plasma sintering. Microstructure, hardness, phase composition, and the optical properties of the ceramics were investigated by scanning electron microscopy, micro-Vickers hardness, X-ray diffraction and Fourier-transform infrared spectroscopy. The results indicated that temperature has a strong effect on grain growth as well as on reducing porosity and improving the properties. The optimal combination of properties (99.5 % density, 165 kg mm−2 hardness and 30 % transmission) was achieved after sintering at 1 100 °C for a holding time of 10 min with an applied pressure of 90 MPa. Furthermore, the grains tended to orient along the spark plasma sintering direction via preferential grain growth that was observed by X-ray diffraction and scanning electron microscopy.
References
[1] L.Z.Kriksunov: Handbook on the Principles of Infrared Engineering, Sov. Radio, Moscow (1978).Suche in Google Scholar
[2] A.R.Hilton: J. Electron. Mater.2 (1973) 211. 10.1007/BF02666154Suche in Google Scholar
[3] P.Klocek: Handbook of infrared optical materials, CRC Press (1991). 1874995;Suche in Google Scholar
[4] E.M.Gavrishchuk, E.V.Yashina: J. Opt. Tech.71 (2004) 822. 10.1364/JOT.71.000822Suche in Google Scholar
[5] C.A.Klein, J.Pappis: Opt. Eng.25 (1986) 254519. 10.1117/12.7973854Suche in Google Scholar
[6] E.M.Gavrushchuk: Inorg. Mater.39 (2003) 883. 1025529017192. 10.1023/ASuche in Google Scholar
[7] D.Hodges: Industrial Optics Manufacturers Challenged on Performance and Cost (1995).Suche in Google Scholar
[8] D.C.Harris: Inf. Phys. Tech.39 (1998) 185. 10.1016/S1350-4495(98)00006-1Suche in Google Scholar
[9] A.N.Bryzgalov, V.V.Musatov, V.V.Buz'ko: J. Semicond.38 (2004) 310. 10.1134/1.1682334Suche in Google Scholar
[10] D.C.Harris: Int. Socie. Opt. Photon.12 (2007) 654502. 10.1117/12.716808Suche in Google Scholar
[11] B.N.Kim, K.Hiraga, K.Morita, H.Yoshida, Y.Kagawa: Acta Mater.58 (2010) 4527. 10.1016/j.actamat.2010.04.049Suche in Google Scholar
[12] S.Hayun, V.Paris, R.Mitrani, S.Kalabukhov, M.P.Dariel, E.Zaretsky, N.Frage: Ceram. Int.38 (2012) 6335. DOI: doi.org/10.1016/j.ceramint.2012.05.003. 10.1016/j.ceramint.2012.05.003Suche in Google Scholar
[13] N.Frage, S.Kalabukhov, N.Sverdlov, V.Kasiyan, A.Rothman, M.P.Dariel: Ceram. Int.38 (2012) 5513. 10.1016/j.ceramint.2012.03.066Suche in Google Scholar
[14] A.Cuccu, S.Montinaro, R.Orru, G.Cao, D.Bellucci, A.Sola, V.Cannillo: Ceram. Int.41 (2015) 725. 10.1016/j.ceramint.2014.08.131Suche in Google Scholar
[15] M.A.Saeed, F.A.Deorsola, R.M.Rashad: (2013. Int. J. Refract. Met. Hard Mater.41 (2013) 48. 10.1016/j.ijrmhm.2013.01.016Suche in Google Scholar
[16] T.Borkar, R.Banerjee: Mater. Sci. Eng.618 (2014) 176. 10.1016/j.msea.2014.08.070Suche in Google Scholar
[17] M.Kermani, M.Razavi, M.R.Rahimipour, M.Zakeri: J. Alloys Compd.593 (2014) 242. 10.1016/j.msea.2014.08.070Suche in Google Scholar
[18] M.Kermani, M.Razavi, M.R.Rahimipour, M.Zakeri: J. Alloys Compd.585 (2014) 229. 10.1016/j.jallcom.2013.09.125Suche in Google Scholar
[19] D.Jiang, D.M.Hulbert, U.Anselmi-Tamburini, T.Ng, D.Land, A.K.Mukherjee: J. Am. Ceram Soc.91 (2008) 151. 10.1111/j.1551-2916.2007.02086.xSuche in Google Scholar
[20] K.Morita, B.N.Kim, K.Hiraga, H.Yoshida: J. Mater. Res.24 (2009) 2863. 10.1557/jmr.2009.0335Suche in Google Scholar
[21] N.Roussel, L.Lallemant, B.Durand, S.Guillemet, J.Y.C.Ching, G.Fantozzi, G.Bonnefont: Ceram. Int.37 (2011) 3565. 10.1016/j.ceramint.2011.05.152Suche in Google Scholar
[22] R.Chaim, A.Shlayer, C.Estournes: J. Eur. Ceram. Soc.29 (2009) 91. 10.1016/j.jeurceramsoc.2008.05.043Suche in Google Scholar
[23] D.JiangA.K.Mukherjee: J. Am. Ceram. Soc.93 (2010) 769. 10.1111/j.1551-2916.2009.03444.xSuche in Google Scholar
[24] C.Chlique, G.Delaizir, O.Merdrignac-Conanec, C.Roucau, M.Dolle, P.Rozier, X.H.Zhang: Opt. Mater.33 (2011) 706. 10.1016/j.optmat.2010.10.008Suche in Google Scholar
[25] Y.Chen, L.Zhang, J.Zhang, P.Liu, T.Zhou, H.Zhang, D.Shen: Opt. Mater.50 (2015) 36. 10.1016/j.optmat.2015.03.058Suche in Google Scholar
[26] G.Zhou: PhD thesis, ZnSe ceramics and phosphate glasses for optical applications in the visible and infrared ranges, Rennes1(2014).Suche in Google Scholar
[27] S.Safian, M.Zakeri, M.R.Rahimipour, A.Rahbari, E.Irom: Int. J. Mater. Res.107 (2016) 948. 10.3139/146.111413Suche in Google Scholar
[28] O.Madelung, U.Rossler, M.Schulz: Zinc selenide (ZnSe) density, melting point, hardness, Springer, Berlin Heidelberg (1999).Suche in Google Scholar
[29] http://refhub.elsevier.com/S0925–3467(15)00223–2/h0105.Suche in Google Scholar
[30] R.D.Walther. Method for preparing pure, stable znse powder, US Patent: 3454358 (1969).Suche in Google Scholar
[31] T.Hungría, J.Galy, A.Castro: Adv. Eng. Mater.11 (2009) 615. 10.1002/adem.200900052Suche in Google Scholar
[32] B.N.Kim, K.Morita, G.H.Lim, K.Hiraga, H.Yoshida: J. Am. Ceram. Soc.,93 (2010) 2158. 10.1111/j.1551-2916.2010.03699.xSuche in Google Scholar
[33] M.Tokita: Spark Plasma Sintering (SPS) method, systems and applications, Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties, Elsevier Inc, (2013).Suche in Google Scholar
[34] D.C.Harris, Y.Sheng: Infrared window and dome materials, Tutorial texts in optical engineering, (1992).Suche in Google Scholar
[35] C.S.Sahagian, C.A.Pitha: Compendium on High Power Infrared Laser Window Materials, Cambridge (1972).Suche in Google Scholar
[36] R.E.Clark, N.Y.Rochester: Plurality optical element pressing process, U.S. Patent:3589880 (1970).Suche in Google Scholar
[37] Y.Xiong, Z.Y.Fu, H.Wang, Y.C.Wang, Q.J.Zhang: Mater. Sci. Eng.123 (2005) 57. 10.1016/j.mseb.2005.06.023Suche in Google Scholar
[38] C.Chlique: PhD thesis, Preparation et caracterisation de poudres et ceramiques (oxy) sulfures pour applications en optique passive et active, Universite de Rennes1, (2011).Suche in Google Scholar
[39] K.Sairam, G.K.Sonber, T.C.Murthy, C.Subramanian, R.K.Fotedar, P.Nanekar, R.C.Hubli: Int. J. Refrac. Metal. Hard Mater.42 (2014) 185. 10.1016/j.ijrmhm.2013.09.004Suche in Google Scholar
[40] S.Grasso, B.N.Kim, C.Hu, G.Maizza, Y.Sakka: J. Am. Ceram. Soc.93 (2010) 2460. 10.1111/j.1551-2916.2010.03811.xSuche in Google Scholar
[41] S.Grasso, H.Yoshida, H.Porwal, Y.Sakka, M.Reece: Ceram. Int.39 (2013) 3243. 10.1016/j.ceramint.2012.10.012Suche in Google Scholar
[42] H.Zhang, B.N.Kim, K.Morita, H.Yoshida, K.Hiraga, Y.Sakka: J. Am. Ceram. Soc.94 (2011) 3206. DOI: doi.org/10.1111/j.1551–2916.2011.04789.x. 10.1111/j.1551-2916.2011.04481.xSuche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
- A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
- Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
- Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
- Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
- Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
- Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
- Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
- Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
- Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
- Short Communications
- Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
- Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
- A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
- Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
- Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
- Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
- Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
- Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
- Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
- Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
- Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
- Short Communications
- Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
- Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
- DGM News
- DGM News