Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
-
Xilong Zhao
und Kun Wang
Abstract
In this study, in order to investigate the mechanical heterogeneity of a Ti6Al4V titanium alloy laser-welded joint, microstructural examinations, microhardness tests and shear punch tests were carried out. Meanwhile, hole drilling was deployed to measure the residual stress in the joints. In residual stress simulation studies, the complex phenomenon of welding was numerically modelled by indirectly coupled transient, non-linear thermo-mechanical analysis. An elongated combined heat source was used here for modelling the temperature field. The effects of the residual stress after welding, both for considering and neglecting mechanical heterogeneity, were investigated systematically. The obtained results indicate that the residual stress of the simulation, when mechanical heterogeneity is considered closely, matches the experimental data.
References
[1] P.M.Mackenzie, C.A.Walker, J.Mckelvie: Thin Wall Struct.45 (2007) 400–406. 10.1016/j.tws.2007.03.007.Suche in Google Scholar
[2] K.J.Qiu, B.L.Wang, F.Y.Zhou, W.J.Lin, L.Li, J.P.Lin, Y.F.Zheng: J. Mater. Eng. Perform.21 (2012) 2012–2695. DOI:org/10.1007/s11665–012–0308-y. 10.1007/s11665-012-0308-ySuche in Google Scholar
[3] S.Cai, D.M.Bailey, L.E.kay: J. Mater. Eng. Perform.21 (2012) 2012–2559. 10.1007/s11665-012-0302-4.Suche in Google Scholar
[4] K.M.Hong, Y.C.Shin: J. Mater. Process. Technol.237 (2016) 420–429. 10.1016/j.jmatprotec.2016.06.034.Suche in Google Scholar
[5] K.Nikolai, V.Volker, F.Vadim, F.Fedor, R.Stefan: Opt. Laser. Eng.86 (2016) 172–180. 10.1016/j.optlaseng.2016.06.004.Suche in Google Scholar
[6] J.Goldak, A.Chakravarti, M.Bibby: Metall. Mater. Trans. B15 (1984) 299–305. 10.1007/BF02667333.Suche in Google Scholar
[7] P.Knoedel, S.Gkatzogiannis, T.Ummenhofer: J. Constr. Steel Res.132 (2017) 83–96. 10.1016/j.jcsr.2017.01.010.Suche in Google Scholar
[8] R.Avilés, J.Albrzuri, A.Rodríguez, LN.López de lacalle: Int. J. Fatigue55 (2013) 230–244. 10.1016/j.ijfatigue.2013.06.024.Suche in Google Scholar
[9] X.Y.Fang, H.Liu, J.X.Zhang: J. Mater. Eng. Perform.23 (2014) 1973–1980. 10.1007/s11665-014-1002-z.Suche in Google Scholar
[10] S.H.Kim, J.B.Kim, W.J.Lee: J. Mater. Process. Technol.209 (2009) 3905–3913. 10.1016/j.jmatprotec.2008.09.012.Suche in Google Scholar
[11] D.A.Deng, H.Murakawa: Comp. Mater. Sci.37 (2006) 269–277. 10.1016/j.commatsci.2005.07.007.Suche in Google Scholar
[12] Z.Barsouma, A.Lundbäck: Eng. Fail. Anal.16 (2009) 2281–2289. 10.1016/j.engfailanal.2009.03.018.Suche in Google Scholar
[13] C.Liu, B.Wu, J.X.Zhang: Metall. Mater. Trans.B 41B (2010) 1129–1138. 10.1007/s11663-010-9408-y.Suche in Google Scholar
[14] C.Heinze, C.Schwenk, M.Rethmeier: J. Constr. Steel Res.72 (2012) 12–19. 10.1016/j.jcsr.2011.08.011.Suche in Google Scholar
[15] C.Liu, J.X.Zhang, C.B.Xue: Fusion. Eng. Des.86 (2011) 288–295. 10.1016/j.fusengdes.2011.01.116.Suche in Google Scholar
[16] S.Nishikawa, Y.Horii, H.Murakawa: Trans. JWRI71 (2002) 366–367. hdl.handle.net/11094/10833.Suche in Google Scholar
[17] J.A.Francis, H.K.D.H.Bhadeshia, P.J.Withers: Mater. Sci. Technol.23 (2007) 1009–1020. 10.1179/174328408X372074.Suche in Google Scholar
[18] D.A.Deng, Y.Luo, H.Serizawa, M.Shibahara: Trans. JWRI32 (2003) 325–333. hdl.handle.net/11094/12750.Suche in Google Scholar
[19] H.K.D.H.Bhadeshia: Mater. Sci. Eng. A378 (2004) 34–39. 10.1016/j.msea.2003.10.328.Suche in Google Scholar
[20] X.W.Lei, J.H.Huang, X.Jin, S.H.Chen, X.K.Zhao: Mater. Lett.181 (2016) 240–243. 10.1016/j.matlet.2016.06.039.Suche in Google Scholar
[21] D.A.Deng, H.Murakawa: Comp. Mater. Sci.43 (2008) 681–695. 10.1016/j.commatsci.2008.01.025.Suche in Google Scholar
[22] Z.Muhammad, N.Daniel, J.Jean-François, F.Boitout, L.Dischert, X.Noe: Int. J. Pres. Ves. Pip.88 (2011) 45–56. 10.1016/j.ijpvp.2010.10.008.Suche in Google Scholar
[23] X.L.Zhao, X.Song, J.X.Zhang: Chin. J. Nonfer. Metal.22 (2012) 388–393. 10.19476/j.ysxb.1004.0609.2012.02.009.Suche in Google Scholar
[24] X.L.Zhao, J.X.Zhang, X.Song, W.Guo: Mater. Sci. Technol.29 (2013) 1405–1413. 10.1179/1743284713Y.0000000314.Suche in Google Scholar
[25] S.Goyal, V.Karthik, K.V.Kasiviswanathan, M.Valsan, K.Bhann Sankara Rao, B.Raj: Mater. Des.31 (2010) 2546–2552. 031. 10.1016/j.matdes.2009.11.Suche in Google Scholar
[26] R.K.Guduru, K.A.Darling, R.Kishore, R.O.Scattergood, C.C.Koch, K.L.Murty: Mater. Sci. Eng. A395 (2005) 307–314. 2004.12.048. 10.1016/j.msea.Suche in Google Scholar
[27] V.Tvergaard, A.Needleman: Acta Mater.32 (1984) 157–169. 10.1016/0001-6160(84)90213-X.Suche in Google Scholar
[28] V.Tvergaard: Int. J. Fract.17 (1981) 389–407. 10.1007/BF00036191.Suche in Google Scholar
[29] V.Tvergaard: Int. J. Fract.18 (1982) 237–252. 10.1007/BF00015686.Suche in Google Scholar
[30] M.Zhang, F.Bridier, P.Villechaise: Acta Mater.58 (2010) 1087–1096. 10.1016/j.actamat.2009.10.025.Suche in Google Scholar
[31] X.L.Zhao, J.X.Zhang: J. Mater. Eng. Perform.22 (2013) 3182–3191. 10.1007/s11665-013-0614-z.Suche in Google Scholar
[32] K.Nahshon, J.W.Hutchinson: Eur. J. Mech. A27 (2008) 1–17. 10.1016/j.euromechsol.2007.08.002.Suche in Google Scholar
[33] Y.L.Wang, S.H.Lianga, J.T.Ren: Mater. Sci. Eng. A534 (2012) 542–545. 10.1016/j.msea.2011.12.005.Suche in Google Scholar
[34] D.J.Smith, P.J.Bouchard, D.George: J. Strain. Anal. Eng.35 (2000) 287–305. 10.1243/0309324001514422.Suche in Google Scholar
[35] J.Li, Q.Guan, Y.W.Shi: Sci. Technol. Weld. Joining9 (2004) 451–458. 10.1179/136217104225021643.Suche in Google Scholar
[36] M.Labudovic, R.Kovacevic: Proc. Inst. Mech. Eng.215 (2001) 315–340. 10.1243/0954406011520742.Suche in Google Scholar
[37] M.Grujicic, G.Ardkere, B.Pandurangan, C.F.Yen, B.A.Cheeseman: J. Mater. Eng. Perform.21 (2011) 2011–2023. 10.1007/s11665-011-0097-8.Suche in Google Scholar
[38] K.R.Zhang, J.X.Zhang: Rare. Metal. Mater. Eng.38 (2009) 991–994. 10.3321/j.issn:1002-185X.2009.06.011.Suche in Google Scholar
[39] Z.Cai, and H.Zhao: Sci. Technol. Weld. Joi.8 (2003) 195–204. 10.1179/136217103225010916.Suche in Google Scholar
[40] C.Liu, J.X.Zhang, BWu, S.L.Gong: Mater. Des.34 (2012) 609–617. 10.1016/j.matdes.2011.05.014.Suche in Google Scholar
[41] N.Kishore, S.Ganesh Sundara Raman, C.V.Srinivasa Murthy: Mater. Sci. Eng. A471 (2007) 113–119. 2007.03.040. 10.1016/j.msea.Suche in Google Scholar
[42] S.Lathabai, B.L.Jarvis, K.J.Barton: Mater. Sci. Eng. A299 (2001) 81–93. 10.1016/S0921-5093(00)01408-8.Suche in Google Scholar
[43] X.Cao, M.Jahazi: Opt. Laser Eng.47 (2009) 1231–1241. 10.1016/j.optlaseng.2009.05.010.Suche in Google Scholar
[44] E.Akman, A.Demir, T.Canel: J. Mater. Process. Technol.209 (2009) 3705–3713. 10.1016/j.jmatprotec.2008.08.026.Suche in Google Scholar
[45] S.H.Wang, M.D.Wei, L.W.Tsay: Mater. Lett.57 (2003) 1815–1823. 10.1016/S0167-577X(02)01074-1.Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
- A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
- Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
- Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
- Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
- Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
- Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
- Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
- Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
- Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
- Short Communications
- Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
- Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
- A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
- Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
- Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
- Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
- Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
- Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
- Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
- Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
- Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
- Short Communications
- Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
- Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
- DGM News
- DGM News