Thermodynamic modelling of the Hf–Pt system
-
Bo Yang
Abstract
By means of the CALPHAD (CAlcultion of PHAse Diagram) technique, the Hf–Pt system was critically assessed. Based on the experimental data, the four solution phases (liquid, fcc, bcc and hcp) were described with the substitutional solution model. The intermetallic compounds Hf3Pt4 and αHfPt were treated as the formula (Hf,Pt)m(Hf,Pt)n by a two-sublattice model. Based on the solid solution range, the intermetallic compounds HfPt4 and Hf2Pt were treated as the formula (Hf,Pt)1(Pt)3 and (Hf)2(Hf,Pt)1, respectively. The intermetallic compound Hf2Pt3 was treated as a stoichiometric compound. The formulas (Hf,Pt)0.5(Hf,Pt)0.5 · (Va)3 and (Hf,Pt)0.25(Hf,Pt)0.75(Va)0.5 were applied to describe the compounds βHfPt with CsCl-type structure (B2) and HfPt3 with Ni3Ti-type structure (D024) to cope with the order-disorder transition from bcc-A2 to bcc-B2 and hcp-A3 to hcp-D024. A set of self-consistent thermodynamic parameters of the Hf–Pt system was obtained.
References
[1] Trw lnc.Oxidation resistant refractory alloys. US Patent: us 3957507 (1976).Suche in Google Scholar
[2] A.Yamaguchi, H.Murakami, S.Kuroda, H.Imai: Mater. T. Jim48 (2007) 2422. 10.2320/matertrans.MAW200723Suche in Google Scholar
[3] J.Nesbitt, B.Nagaraj, J.Williams: ntrs.nasa.gov. 2000. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010061700.pdfSuche in Google Scholar
[4] T.D.Hatchard, J.E.Harlow, D.A.Stevens, G.C.K.Liu, R.J.Sanderson, N.van der Bosch, J.R.Dahn, G.M.Haugen, G.D.Vernstrom, R.T.Atansoski: Electrochim. Acta.56 (2011) 10436. 10.1016/j.electacta.2011.05.059Suche in Google Scholar
[5] G.M.Nowell, D.G.Pearson, C.J.Ottley, M.Tilby: J. Eng. Educ.93 (2005) 313. 10.1039/9781847552419–00243Suche in Google Scholar
[6] A.Baudry, P.Boyer, L.P.Ferreira, S.W.Harris, S.Miraglia, L.Pontonnier: J. Phys.: Condens. Matter.4 (1992) 5025. 10.1088/0953-8984/4/21/018Suche in Google Scholar
[7] J.N.Prieskorn, H.Chen, W.Chen, W.J.Tornquist: J. Phys. Chem.96 (1992) 810. 10.1002/chin.199221028Suche in Google Scholar
[8] J.K.Stalick, R.M.Waterstrat: J. Phase Equilib. Diff.35 (2014) 15. 10.1007/s11669-013-0268-4Suche in Google Scholar
[9] P.J.Meschter, W.L.Worrell: Metall. Trans. A8 (1977) 503. 10.1007/BF02661762Suche in Google Scholar
[10] A.E.Dwight, P.E.Beck: Trans. Met. Soc. AIME.215 (1959) 976.Suche in Google Scholar
[11] C.E.Holcombe: J. Less-Common Met.44 (1976) 331. 10.1016/0022-5088(76)90149-Suche in Google Scholar
[12] A.E.Dwight, R.A.Jr.Conner, J.W.Downey: Acta Crystallogr.18 (1965) 835. 10.1107/S0365110X65002050Suche in Google Scholar
[13] V.N.Kuznetsov, G.P.Zhmurko, E.M.Sokolovskaya: J. Less-Common Met.163 (1990) 1. 10.1016/0022-5088(90)90080-4Suche in Google Scholar
[14] J.K.Stalick, K.Wang, R.M.Waterstrat: J. Phase Equilib. Diff.34 (2013) 385. 10.1007/s11669-013-0247-9Suche in Google Scholar
[15] V.Srikrishnan, P.J.Ficalora: Metall. Mater. Trans. B5 (1974) 1471. 10.1007/BF02646634Suche in Google Scholar
[16] J.C.Gachon, J.Charles, J.Hertz: Calphad9 (1985) 29. 10.1016/0364-5916(85)90028-8Suche in Google Scholar
[17] L.Topor, O.J.Kleppa: Metall. Mater. Trans. A19 (1988) 1827. 10.1007/BF02645151Suche in Google Scholar
[18] X.Q.Chen, R.Podloucky: Calphad30 (2006) 266. 10.1016/j.calphad.2006.04.004Suche in Google Scholar
[19] O.Levy, G.L.W.Hart, S.Curtarolo: Acta Mater.58 (2010) 2887. 10.1016/j.actamat.2010.01.017Suche in Google Scholar
[20] W.Xing, X.Q.Chen, D.Li, Y.Li, C.L.Fu, S.V.Meschel, X.Ding: Intermetallics28 (2012) 16. 10.1016/j.intermet.2012.03.033Suche in Google Scholar
[21] H.Krarcha, A.Ferroudj, S.Mesadia: Solid State Phen.257 (2016) 38. 10.4028/www.scientific.net/SSP.257.38Suche in Google Scholar
[22] A.T.Dinsdale: Calphad15 (1991) 317. 10.1016/0364-5916(91)90030-NSuche in Google Scholar
[23] O.Redlich, A.T.Kister: Ind. Eng. Chem.40 (1948) 345. 10.1021/ie50458a036Suche in Google Scholar
[24] I.Ansara, N.Dupin, H.L.Lukas, S.Bo: J. Alloys Compd.247 (1977) 20. 10.1016/S0925-8388(96)02652-7Suche in Google Scholar
[25] M.Hillert, L.I.Staffansson: Acta Chem. Scand.24 (1970) 3618. 10.3891/acta.chem.scand.24-3618Suche in Google Scholar
[26] B.Sundman, J.Ågren: J. Phys. Chem. Solids42 (1981) 297. 10.1016/0022-3697(81)90144-XSuche in Google Scholar
[27] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153. 10.1016/0364-5916(85)90021-5Suche in Google Scholar
[28] C.Wanger: Z. Phys. Chem.22 (1933) 181. 10.1515/zpch-1931-s120Suche in Google Scholar
[29] A.F.Guillermet, W.Huang: Z. Metallkd.79 (1988) 88.Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of lubricant additives on the tribological behavior of aluminum alloy against steel
- First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy
- Precipitation characteristics of a nickel-based single-crystal superalloy after long-term thermal exposure
- Dynamic evolution of the metastable structure and nano-precipitation of 7055 aluminum alloy under thermal deformation
- Microstructural evolution and high-temperature compressive properties of an extruded Mg–Dy–Zn alloy sheet
- Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel
- Microstructural evolution, phase selection and properties of CoCrCuFeMnxNi high-entropy alloys
- Thermodynamic modelling of the Hf–Pt system
- Mechanical, tribological and oxidation resistance properties of Ni-based self-lubricating composite coatings at elevated temperature by APS
- Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
- Co3O4/carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance
- Short Communications
- Reduced graphene oxide–SnO nanocomposites with good visible-light photoactivity
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of lubricant additives on the tribological behavior of aluminum alloy against steel
- First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy
- Precipitation characteristics of a nickel-based single-crystal superalloy after long-term thermal exposure
- Dynamic evolution of the metastable structure and nano-precipitation of 7055 aluminum alloy under thermal deformation
- Microstructural evolution and high-temperature compressive properties of an extruded Mg–Dy–Zn alloy sheet
- Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel
- Microstructural evolution, phase selection and properties of CoCrCuFeMnxNi high-entropy alloys
- Thermodynamic modelling of the Hf–Pt system
- Mechanical, tribological and oxidation resistance properties of Ni-based self-lubricating composite coatings at elevated temperature by APS
- Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
- Co3O4/carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance
- Short Communications
- Reduced graphene oxide–SnO nanocomposites with good visible-light photoactivity
- DGM News
- DGM News