Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
-
Yifeng Xiao
Abstract
Porous Ni–Cr–Al alloy samples were fabricated by pressureless sintering of Ni, Cr, and Al elemental powders. The phase transformation, swelling behavior, pore structure parameters, microstructure, and pore formation mechanisms of porous Ni–Cr–Al alloys were systematically investigated. Results show that obvious swelling behavior occurs during sintering. The open porosity of the Ni–Cr–Al alloy increases as the sintering temperature increases below 920°C, followed by a relatively declining value for phase transformation beyond 920°C. The porous Ni–Cr–Al alloy samples exhibit an open porosity of 35.02% when sintered at 1200°C for 3 h. The main pore formation mechanisms are the Kirkendall effect and the development of interparticle pores.
References
[1] J.H.Qin, Q.Chen, C.Y.Yang, Y.Huang: J. Alloys Compd.654 (2016) 39–44. 10.1016/j.jallcom.2015.09.148Search in Google Scholar
[2] Q.Pang, Z.L.Hu, D.L.Sun: Vacuum129 (2016) 86–98. 10.1016/j.vacuum.2016.04.018Search in Google Scholar
[3] M.Y.Gao, C.Yang, Q.B.Zhang, Y.W.Yu, Y.X.Hua, Y.Li, P.Dong: Electrochim. Acta.215 (2016) 609–616. 10.1016/j.electacta.2016.08.145 Get rights and contentSearch in Google Scholar
[4] Q.Pang, Z.L.Hu, G.R.Wang: T. Nonferr. Metal. Soc.27 (2017) 1052–1062. 10.1016/S1003-6326(17)60123-7Search in Google Scholar
[5] L.P.Yu, Y.Jiang, Y.H.He, X.L.Liu, H.B.Zhang: Mater. Chem. Phys.163 (2015), 355–361. 10.1016/j.matchemphys.2015.07.050Search in Google Scholar
[6] P.Audigié, R.V.Put, H.Murakami, D.Monceau: Surf. Coat. Technol.309 (2017) 258–265. 10.1016/j.surfcoat.2016.11.028Search in Google Scholar
[7] J.Zhang, J.Huang, G.Shang, Z.Wang, H.Wang: Corros. Sci. Prot. Technol.28 (2016) 531–536. 10.11903/1002.6495.2016.046Search in Google Scholar
[8] D.Wu, S.Jiang, Q.Fan, J.Gong, C.Sun: Acta Metall. Sin.50 (2014) 1170–1178. 10.11900/0412.1961.2014.00077Search in Google Scholar
[9] W.G.Sloof, T.J.Nijdam: Int. J. Mater. Res.100 (2009) 1318–1330. 10.3139/146.110201Search in Google Scholar
[10] D. AzimiYancheshmeh, M.Esmailian, K.Shirvani: Int. J. Hydrogen Energy.43 (2018) 5365–5373. 10.1016/j.ijhydene.2017.08.039Search in Google Scholar
[11] Y.Wang, Y.Liu, H.P.Tang, W.J.Li: Mater. Charact.107 (2015) 283–292. 10.1016/j.matchar.2015.06.029Search in Google Scholar
[12] H.V.P.Nguyen, S.A.Song, D.Seo, D.N.Park, H.C.Ham, I.H.Oh, S.P.Yoon, J.Han, S.W.Nam, J.Kim: Mater. Chem. Phys.136 (2012) 910–916. 10.1016/j.matchemphys.2012.08.018 Search in Google Scholar
[13] W.Liu, X.Y.Xu, H.M.Zhao, C.J.Sun: Key Eng. Mater.443 (2010) 475–480. 10.4028/www.scientific.net/KEM.443.475Search in Google Scholar
[14] J.He, H.Guo, H.Peng, S.K.Gong: Appl. Surf. Sci.274 (2013) 144–150. 10.1016/j.apsusc.2013.02.136Search in Google Scholar
[15] M.Rahimian, S.Milenkovic, L.Maestro, A.Eguidazu Ruiz De Azua, I.Sabirov: Mater. Des.87 (2015) 712–720. 10.1016/j.matdes.2015.08.038Search in Google Scholar
[16] L.Y.Sheng, T.F.Xi, C.Lai, J.T.Guo, Y.F.Zheng: T. Nonferr. Metal. Soc.22 (2012) 489–495. 10.1016/S1003-6326(11)61203-XSearch in Google Scholar
[17] H.P.Tang, W.Yan, Y.Liu, W.J.Li, C.Han: J. Cent. South Univ.20 (2013) 3345–3353. 10.1007/s11771-013-1495-xSearch in Google Scholar
[18] S.V.Raju, B.K.Godwal, J.Yan, R.Jeanloz, S.K.Saxena: J. Alloys Compd.657 (2016) 889–892. 10.1016/j.jallcom.2015.10.092Search in Google Scholar
[19] H.X.Dong, Q.P.Liu, Y.H.He, C.T.Liud: J. Comput. Theor. Nanos.12 (2012) 272–275. 10.1166/asl.2012.2746Search in Google Scholar
[20] L.Wu, Y.Zeng, Y.F.Xiao, Y.H.He: Powder Metall.57 (2014) 387–393. 10.1179/1743290113Y.0000000067Search in Google Scholar
[21] E.Jakobs, W.J.Koros: J. Membr. Sci.124 (1997) 149–159. 10.1016/s0376-7388(96)00203-7Search in Google Scholar
[22] K.A.Philpot, Z.A.Munir, J.B.Holt: J. Mater. Sci.22 (1987) 159–169. 10.1007/BF01160566Search in Google Scholar
[23] J.T.Guo: Ordering Ni–Al intermetallics, Beijing: Science Press, (2003) 315.Search in Google Scholar
[24] C.K.Sudbrac, T.D.Ziebell, R.D.Noebe, D.N.Seidman: Acta Mater.56 (2008) 448–463. 10.1016/j.actamat.2007.09.042Search in Google Scholar
[25] G.R.Wallwork, A.Z.Hed: Oxid. Met.3 (1971) 171–184. 10.1007/BF00603485Search in Google Scholar
[26] P.J.Zhou, J.J.Yu, X.F.Sun, H.R.Guan, Z.Q.Hu: Scripta Mater.57 (2007) 643–646. 10.1016/j.scriptamat.2007.06.003Search in Google Scholar
[27] V.H.Garcia, P.M.Mors, C.Scherer: Acta Mater.48 (2000) 1201–1206. 10.1016/s1359-6454(99)00379-1Search in Google Scholar
[28] R.A.Gregg, F.N.Rhines: Metall. Trans.4 (1973) 1365–1374. 10.1007/BF02644534Search in Google Scholar
[29] H.H.Hausner, O.V.Roman: Sov. Powder Metall.3 (1965) 180–184. 10.1007/BF00773945Search in Google Scholar
[30] J.H.Dedrick, A.Gerds: J. Appl. Phys.20 (1949) 1042–1044. 10.1063/1.1698271Search in Google Scholar
[31] J.G.R.Rockland: Acta Metall.15 (1967) 277–286. 10.1016/0001–6160(67)90203–9Search in Google Scholar
[32] L.S.Darken: Metall. Mater. Trans. B41 (2010): 277–294. 10.1007/s11661-010-0177-7Search in Google Scholar
[33] B.Wierzba: Physica A.392 (2013) 2860–2867. 10.1016/j.physa.2012.11.011Search in Google Scholar
[34] D.M.Liu, X.Z.Li, Y.Q.Su, M.Rettenmayr, J.J.Guo, H.Z.Fu: Appl. Phys. A.116 (2014) 1821–1831. 10.1007/s00339-013-8168-3Search in Google Scholar
[35] M.Hasaka, T.Morimura, Y.Uchiyama, S.Kondo, T.Watanabe, K.Hisatsune, T.Furuse: Acta Metall.29 (1993) 959–962. 10.1016/0956-716x(93)90389-aSearch in Google Scholar
[36] S.P.Garg, G.B.Kale, R.V.Patil, T.Kundu: Intermetallics.7 (1999) 901–908. 10.1016/s0966-9795(98)00139-3Search in Google Scholar
[37] S.B.Jung, T.Yamane, Y.Minamino, K.Hirao, H.Araki, S.Saji: J. Mater. Sci. Lett.11 (1992) 1333–1337. 10.1007/BF00729354Search in Google Scholar
[38] M.Danielewski, B.Wierzba, K.Tkacz-Śmiech, A.Nowotnik: Comput. Mater. Sci.69 (2013) 1–6. 10.1016/j.commatsci.2012.11.026Search in Google Scholar
[39] H.Wei, X.F.Sun: Scripta Mater.62 (2010) 632–634. 10.1016/j.scriptamat.2010.01.030Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of lubricant additives on the tribological behavior of aluminum alloy against steel
- First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy
- Precipitation characteristics of a nickel-based single-crystal superalloy after long-term thermal exposure
- Dynamic evolution of the metastable structure and nano-precipitation of 7055 aluminum alloy under thermal deformation
- Microstructural evolution and high-temperature compressive properties of an extruded Mg–Dy–Zn alloy sheet
- Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel
- Microstructural evolution, phase selection and properties of CoCrCuFeMnxNi high-entropy alloys
- Thermodynamic modelling of the Hf–Pt system
- Mechanical, tribological and oxidation resistance properties of Ni-based self-lubricating composite coatings at elevated temperature by APS
- Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
- Co3O4/carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance
- Short Communications
- Reduced graphene oxide–SnO nanocomposites with good visible-light photoactivity
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of lubricant additives on the tribological behavior of aluminum alloy against steel
- First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy
- Precipitation characteristics of a nickel-based single-crystal superalloy after long-term thermal exposure
- Dynamic evolution of the metastable structure and nano-precipitation of 7055 aluminum alloy under thermal deformation
- Microstructural evolution and high-temperature compressive properties of an extruded Mg–Dy–Zn alloy sheet
- Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel
- Microstructural evolution, phase selection and properties of CoCrCuFeMnxNi high-entropy alloys
- Thermodynamic modelling of the Hf–Pt system
- Mechanical, tribological and oxidation resistance properties of Ni-based self-lubricating composite coatings at elevated temperature by APS
- Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
- Co3O4/carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance
- Short Communications
- Reduced graphene oxide–SnO nanocomposites with good visible-light photoactivity
- DGM News
- DGM News