Home Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
Article
Licensed
Unlicensed Requires Authentication

Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis

  • Yifeng Xiao , Yang Xu , Liang Wu , Yanfei Xu , Jinwen Qian , Xiaohua Guo , Xiaona Li and Yuehui He
Published/Copyright: August 30, 2018
Become an author with De Gruyter Brill

Abstract

Porous Ni–Cr–Al alloy samples were fabricated by pressureless sintering of Ni, Cr, and Al elemental powders. The phase transformation, swelling behavior, pore structure parameters, microstructure, and pore formation mechanisms of porous Ni–Cr–Al alloys were systematically investigated. Results show that obvious swelling behavior occurs during sintering. The open porosity of the Ni–Cr–Al alloy increases as the sintering temperature increases below 920°C, followed by a relatively declining value for phase transformation beyond 920°C. The porous Ni–Cr–Al alloy samples exhibit an open porosity of 35.02% when sintered at 1200°C for 3 h. The main pore formation mechanisms are the Kirkendall effect and the development of interparticle pores.


*Correspondence address, Mrs. Liang Wu, School of Mechanical Engineering Xiangtan University Hunan, P. R. China, Key Laboratory of welding robot and application technology of Hunan Province Xiangtan University Xiangtan, P. R. China, Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University Xiangtan, P. R. China, E-mail:

References

[1] J.H.Qin, Q.Chen, C.Y.Yang, Y.Huang: J. Alloys Compd.654 (2016) 3944. 10.1016/j.jallcom.2015.09.148Search in Google Scholar

[2] Q.Pang, Z.L.Hu, D.L.Sun: Vacuum129 (2016) 8698. 10.1016/j.vacuum.2016.04.018Search in Google Scholar

[3] M.Y.Gao, C.Yang, Q.B.Zhang, Y.W.Yu, Y.X.Hua, Y.Li, P.Dong: Electrochim. Acta.215 (2016) 609616. 10.1016/j.electacta.2016.08.145 Get rights and contentSearch in Google Scholar

[4] Q.Pang, Z.L.Hu, G.R.Wang: T. Nonferr. Metal. Soc.27 (2017) 10521062. 10.1016/S1003-6326(17)60123-7Search in Google Scholar

[5] L.P.Yu, Y.Jiang, Y.H.He, X.L.Liu, H.B.Zhang: Mater. Chem. Phys.163 (2015), 355361. 10.1016/j.matchemphys.2015.07.050Search in Google Scholar

[6] P.Audigié, R.V.Put, H.Murakami, D.Monceau: Surf. Coat. Technol.309 (2017) 258265. 10.1016/j.surfcoat.2016.11.028Search in Google Scholar

[7] J.Zhang, J.Huang, G.Shang, Z.Wang, H.Wang: Corros. Sci. Prot. Technol.28 (2016) 531536. 10.11903/1002.6495.2016.046Search in Google Scholar

[8] D.Wu, S.Jiang, Q.Fan, J.Gong, C.Sun: Acta Metall. Sin.50 (2014) 11701178. 10.11900/0412.1961.2014.00077Search in Google Scholar

[9] W.G.Sloof, T.J.Nijdam: Int. J. Mater. Res.100 (2009) 13181330. 10.3139/146.110201Search in Google Scholar

[10] D. AzimiYancheshmeh, M.Esmailian, K.Shirvani: Int. J. Hydrogen Energy.43 (2018) 53655373. 10.1016/j.ijhydene.2017.08.039Search in Google Scholar

[11] Y.Wang, Y.Liu, H.P.Tang, W.J.Li: Mater. Charact.107 (2015) 283292. 10.1016/j.matchar.2015.06.029Search in Google Scholar

[12] H.V.P.Nguyen, S.A.Song, D.Seo, D.N.Park, H.C.Ham, I.H.Oh, S.P.Yoon, J.Han, S.W.Nam, J.Kim: Mater. Chem. Phys.136 (2012) 910916. 10.1016/j.matchemphys.2012.08.018 Search in Google Scholar

[13] W.Liu, X.Y.Xu, H.M.Zhao, C.J.Sun: Key Eng. Mater.443 (2010) 475480. 10.4028/www.scientific.net/KEM.443.475Search in Google Scholar

[14] J.He, H.Guo, H.Peng, S.K.Gong: Appl. Surf. Sci.274 (2013) 144150. 10.1016/j.apsusc.2013.02.136Search in Google Scholar

[15] M.Rahimian, S.Milenkovic, L.Maestro, A.Eguidazu Ruiz De Azua, I.Sabirov: Mater. Des.87 (2015) 712720. 10.1016/j.matdes.2015.08.038Search in Google Scholar

[16] L.Y.Sheng, T.F.Xi, C.Lai, J.T.Guo, Y.F.Zheng: T. Nonferr. Metal. Soc.22 (2012) 489495. 10.1016/S1003-6326(11)61203-XSearch in Google Scholar

[17] H.P.Tang, W.Yan, Y.Liu, W.J.Li, C.Han: J. Cent. South Univ.20 (2013) 33453353. 10.1007/s11771-013-1495-xSearch in Google Scholar

[18] S.V.Raju, B.K.Godwal, J.Yan, R.Jeanloz, S.K.Saxena: J. Alloys Compd.657 (2016) 889892. 10.1016/j.jallcom.2015.10.092Search in Google Scholar

[19] H.X.Dong, Q.P.Liu, Y.H.He, C.T.Liud: J. Comput. Theor. Nanos.12 (2012) 272275. 10.1166/asl.2012.2746Search in Google Scholar

[20] L.Wu, Y.Zeng, Y.F.Xiao, Y.H.He: Powder Metall.57 (2014) 387393. 10.1179/1743290113Y.0000000067Search in Google Scholar

[21] E.Jakobs, W.J.Koros: J. Membr. Sci.124 (1997) 149159. 10.1016/s0376-7388(96)00203-7Search in Google Scholar

[22] K.A.Philpot, Z.A.Munir, J.B.Holt: J. Mater. Sci.22 (1987) 159169. 10.1007/BF01160566Search in Google Scholar

[23] J.T.Guo: Ordering Ni–Al intermetallics, Beijing: Science Press, (2003) 315.Search in Google Scholar

[24] C.K.Sudbrac, T.D.Ziebell, R.D.Noebe, D.N.Seidman: Acta Mater.56 (2008) 448463. 10.1016/j.actamat.2007.09.042Search in Google Scholar

[25] G.R.Wallwork, A.Z.Hed: Oxid. Met.3 (1971) 171184. 10.1007/BF00603485Search in Google Scholar

[26] P.J.Zhou, J.J.Yu, X.F.Sun, H.R.Guan, Z.Q.Hu: Scripta Mater.57 (2007) 643646. 10.1016/j.scriptamat.2007.06.003Search in Google Scholar

[27] V.H.Garcia, P.M.Mors, C.Scherer: Acta Mater.48 (2000) 12011206. 10.1016/s1359-6454(99)00379-1Search in Google Scholar

[28] R.A.Gregg, F.N.Rhines: Metall. Trans.4 (1973) 13651374. 10.1007/BF02644534Search in Google Scholar

[29] H.H.Hausner, O.V.Roman: Sov. Powder Metall.3 (1965) 180184. 10.1007/BF00773945Search in Google Scholar

[30] J.H.Dedrick, A.Gerds: J. Appl. Phys.20 (1949) 10421044. 10.1063/1.1698271Search in Google Scholar

[31] J.G.R.Rockland: Acta Metall.15 (1967) 277286. 10.1016/0001–6160(67)90203–9Search in Google Scholar

[32] L.S.Darken: Metall. Mater. Trans. B41 (2010): 277294. 10.1007/s11661-010-0177-7Search in Google Scholar

[33] B.Wierzba: Physica A.392 (2013) 28602867. 10.1016/j.physa.2012.11.011Search in Google Scholar

[34] D.M.Liu, X.Z.Li, Y.Q.Su, M.Rettenmayr, J.J.Guo, H.Z.Fu: Appl. Phys. A.116 (2014) 18211831. 10.1007/s00339-013-8168-3Search in Google Scholar

[35] M.Hasaka, T.Morimura, Y.Uchiyama, S.Kondo, T.Watanabe, K.Hisatsune, T.Furuse: Acta Metall.29 (1993) 959962. 10.1016/0956-716x(93)90389-aSearch in Google Scholar

[36] S.P.Garg, G.B.Kale, R.V.Patil, T.Kundu: Intermetallics.7 (1999) 901908. 10.1016/s0966-9795(98)00139-3Search in Google Scholar

[37] S.B.Jung, T.Yamane, Y.Minamino, K.Hirao, H.Araki, S.Saji: J. Mater. Sci. Lett.11 (1992) 13331337. 10.1007/BF00729354Search in Google Scholar

[38] M.Danielewski, B.Wierzba, K.Tkacz-Śmiech, A.Nowotnik: Comput. Mater. Sci.69 (2013) 16. 10.1016/j.commatsci.2012.11.026Search in Google Scholar

[39] H.Wei, X.F.Sun: Scripta Mater.62 (2010) 632634. 10.1016/j.scriptamat.2010.01.030Search in Google Scholar

Received: 2017-10-31
Accepted: 2018-02-08
Published Online: 2018-08-30
Published in Print: 2018-09-14

© 2018, Carl Hanser Verlag, München

Downloaded on 13.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111669/html
Scroll to top button