First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy
-
Mathieu Terner
, Ji-Won Lee , Jin-Hyeok Kim and Hyun-Uk Hong
Abstract
Grain boundary serration is an effective way to increase the high temperature resistance of superalloys and steels. The popular Alloy 625 Ni-based superalloy was until now believed not to form serrated grain boundaries based on previous considerations of serrability criteria. Following the recent strain-induced serration mechanism, a special heat treatment involving continuous slow cooling between the solution and aging temperature was designed. As a result, significant serration was observed for the first time for Alloy 625 promoted by slow cooling. Grain boundary M23C6 carbides were systematically detected from either degenerescence of solidification MC carbides or heterogeneous nucleation. Upon aging, serration amplitude increased and precipitation of the δ phase proliferated.
References
[1] M.J.Donachie, S.J.Donachie: Superalloys – A Technical Guide, Second Edition. ASM International (2002). ISBN: 0-87170-749-7.10.31399/asm.tb.stg2.9781627082679Search in Google Scholar
[2] L.M.Suave, J.Cormier, P.Villechaise, A.Soula, Z.Hervier, D.Bertheau, J.Laigo: Metall. Mater. Trans. A45 (2014) 2963. 10.1007/s11661-014-2256-7Search in Google Scholar
[3] S.J.Patel, G.D.Smith, in: International Symposium Niobium 2001, Orlando, Florida, USA, TMS (2001) 1081.Search in Google Scholar
[4] A.K.Koul, G.H.Gessinger: Acta Metall.31 (1983) 1061. 10.1016/0001-6160(83)90202-XSearch in Google Scholar
[5] J.M.Larson, S.Floreen: Metall. Trans. A8 (1977) 51. 10.1007/BF02677263Search in Google Scholar
[6] A.K.Koul, R.Thamburaj: Metall. Trans. A16 (1985) 17. 10.1007/BF02656707Search in Google Scholar
[7] H. LoyerDanflou, M.Marty: Superalloys (1992) 63. 10.7449/1992/Superalloys_1992_63_72Search in Google Scholar
[8] A.Wisniewski, J.Beddoes: Mater. Sci. Eng.A 510–511 (2009) 266. 10.1016/j.msea.2008.04.130Search in Google Scholar
[9] H.U.Hong, I.S.Kim, B.G.Choi, M.Y.Kim, C.Y.Jo: Mater. Sci. Eng. A517 (2009) 125. 10.1016/j.msea.2009.03.071Search in Google Scholar
[10] J.G.Yoon, H.W.Jeong, Y.S.Yoo, H.U.Hong: Mater. Charact.101 (2015) 49. 10.1016/j.matchar.2015.01.002Search in Google Scholar
[11] J.W.Lee, D.J.Kim, H.U.Hong: Mater. Sci. Eng. A625 (2015) 164. 10.1016/j.msea.2014.12.010Search in Google Scholar
[12] M.F.Henry, Y.S.Yoo, D.Y.Yoon, J.Choi: Metall. Trans. A24 (1993) 1733. 10.1007/BF02657848Search in Google Scholar
[13] K.N.Tu, D.Turnbull: Acta Metall.15 (1967) 369. 10.1016/0001-6160(67)90241-3Search in Google Scholar
[14] H.U.Hong, I.S.Kim, B.G.Choi, Y.S.Yoo, C.Y.Jo: Metall. Mater. Trans. A43 (2012) 173. 10.1007/s11661-011-0837-2Search in Google Scholar
[15] H.U.Hong, H.W.Jeong, I.S.Kim, B.G.Choi, Y.S.Yoo, C.Y.Jo: Philos. Mag.92 (2012) 2809. 10.1080/14786435.2012.676212Search in Google Scholar
[16] F.H.Latief, H.U.Hong, T.Blanc, I.S.Kim, B.G.Choi, C.Y.Jo, J.H.Lee: Mater. Chem. Physics148 (2014) 1194. 10.1016/j.matchemphys.2014.09.047Search in Google Scholar
[17] M.Terner, H.U.Hong, J.H.Lee, B.G.Choi: Int. J. Mater. Res.107 (2016) 229. 10.3139/146.111332Search in Google Scholar
[18] D.H.Ping, Y.F.Gu, C.Y.Cui, H.Harada: Mater. Sci. Eng. A456 (2007) 99. 10.1016/j.msea.2007.01.090Search in Google Scholar
[19] A.C.Yeh, K.W.Lu, C.M.Kuo, H.Y.Bor, C.N.Wei: Mater. Sci. Eng. A530 (2011) 525. 10.1016/j.msea.2011.10.014Search in Google Scholar
[20] E.J.Pickering, H.Mathur, A.Bohwmik, A.M.D.M.Messe, J.S.Barnard, M.C.Hardy, R.Krakow, K.Loehnert, H.J.Stone, C.M.F.Rae: Acta Mater.60 (2012) 2757. 10.1016/j.actamat.2012.01.042Search in Google Scholar
[21] L.Viskari, Y.Cao, M.Norell, G.Sjoberg, K.Stiller: Mater. Sci. Eng. A528 (2011) 2570. 10.1016/j.msea.2010.11.080Search in Google Scholar
[22] J.W.Lee, M.Terner, H.U.Hong, S.H.Na, J.B.Seol, J.H.Jang, T.H.Lee: Mater. Charact.135 (2018) 146. 10.1016/j.matchar.2017.11.047Search in Google Scholar
[23] S.Floreen, G.E.Fuchs, W.J.Yang, in: E.A.Loria (Eds.), Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, PA (1994) 13. 10.7449/1994/Superalloys_1994_13_37Search in Google Scholar
[24] B.B.Straumal, O.A.Kogtenkova, A.S.Gornkova, V.G.Sursaeva: J. Mater. Sci.51 (2016) 382. 10.1007/s10853-015-9341-1Search in Google Scholar
[25] T.E.Hsieh, R.W.Balluffi: Acta Metall.37 (1989) 2133. 10.1016/0001-6160(89)90138-7Search in Google Scholar
[26] S.B.Lee, W.Sigle, M.Ruhle: Acta Mater.51 (2003) 4583. 10.1016/s1359-6454(03)00295-7Search in Google Scholar
[27] D.M.Kirch, B.Zhao, D.A.Molodov, G.Gottstein: Scr. Mater.56 (2007) 939. 10.1016/j.scriptamat.2007.02.010Search in Google Scholar
[28] A.Donald: Philos. Mag.34 (1976) 1185. 10.1080/00318087608227739Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of lubricant additives on the tribological behavior of aluminum alloy against steel
- First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy
- Precipitation characteristics of a nickel-based single-crystal superalloy after long-term thermal exposure
- Dynamic evolution of the metastable structure and nano-precipitation of 7055 aluminum alloy under thermal deformation
- Microstructural evolution and high-temperature compressive properties of an extruded Mg–Dy–Zn alloy sheet
- Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel
- Microstructural evolution, phase selection and properties of CoCrCuFeMnxNi high-entropy alloys
- Thermodynamic modelling of the Hf–Pt system
- Mechanical, tribological and oxidation resistance properties of Ni-based self-lubricating composite coatings at elevated temperature by APS
- Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
- Co3O4/carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance
- Short Communications
- Reduced graphene oxide–SnO nanocomposites with good visible-light photoactivity
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of lubricant additives on the tribological behavior of aluminum alloy against steel
- First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy
- Precipitation characteristics of a nickel-based single-crystal superalloy after long-term thermal exposure
- Dynamic evolution of the metastable structure and nano-precipitation of 7055 aluminum alloy under thermal deformation
- Microstructural evolution and high-temperature compressive properties of an extruded Mg–Dy–Zn alloy sheet
- Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel
- Microstructural evolution, phase selection and properties of CoCrCuFeMnxNi high-entropy alloys
- Thermodynamic modelling of the Hf–Pt system
- Mechanical, tribological and oxidation resistance properties of Ni-based self-lubricating composite coatings at elevated temperature by APS
- Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
- Co3O4/carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance
- Short Communications
- Reduced graphene oxide–SnO nanocomposites with good visible-light photoactivity
- DGM News
- DGM News