Microstructural evolution, phase selection and properties of CoCrCuFeMnxNi high-entropy alloys
-
Wendong Du
, Ning Liu , Pengjie Zhou , Xiaojing Wang , Bin Wang and Zhen Peng
Abstract
Manganese was added to face-centered-cubic (fcc) high-entropy CoCrCuFeNi alloy to investigate the effects of Mn content on the microstructures, phase selection, and properties of CoCrCuFeMnxNi. CoCrCuFeMnxNi showed typical dendrite and interdendritic structures, and nanoprecipitates including Cu-rich cubic and Cr-rich acicular ones, were obtained in the interdendritic region. Calculated phase-selection-related parameters indicated that the formation of fcc phase was favored. Although two fcc structures were detected by X-ray diffraction, the interdendritic region showed body-centered-cubic, Cr-rich nanoprecipitates when x < 0.5. It is worth noting that the CoCrCuFeMn2.0Ni interdendrites showed an amorphous phase. CoCrCuFeMnxNi showed considerable ductility and increasing compressive strengths with increasing Mn content.
References
[1] J.W.Yeh, S.K.Chen, S.J.Lin, J.Y.Gan, T.S.Chin, T.T.Shun, C.C.Tsau, S.Y.Chang: Adv. Eng. Mater.6 (2004) 299. 10.1002/adem.200300567Search in Google Scholar
[2] B.Cantor, I.T.H.Chang, P.Knight, A.J.B.Vincent: Mater. Sci. Eng. A375 (2004) 213. 10.1016/j.msea.2003.10.257Search in Google Scholar
[3] B.Gludovatz, A.Hohenwarter, D.Catoor, E.H.Chang, E.P.George, R.O.Ritchie: Science345 (2014) 1153. PMid:25190791; 10.1126/science.1254581Search in Google Scholar PubMed
[4] Z.Wu, H.Bei, G.M.Pharr, E.P.George: Acta Mater.81 (2014) 428. 10.1016/j.actamat.2014.08.026Search in Google Scholar
[5] Z.Wu, H.Bei, F.Otto, G.M.Pharr, E.P.George: Intermetallics46 (2014) 131. 10.1016/j.intermet.2013.10.024Search in Google Scholar
[6] L.H.Tian, W.Xiong, C.Liu, S.Lu, M.Fu: J. Mater. Eng. Perform.25 (2016) 5513. 10.1007/s11665-016-2396-6Search in Google Scholar
[7] F.He, Z.Wang, X.Shang, C.Leng, J.Li, J.Wang: Mater. Des.104 (2016) 259. 10.1016/j.matdes.2016.05.044Search in Google Scholar
[8] Y.Lu, X.Gao, L.Jiang, Z.Chen, T.Wang, J.Jie, H.Kang, Y.Zhang, S.Guo, H.Ruan, Y.Zhao, Z.Cao, T.Li: Acta Mater.124 (2017) 143. 10.1016/j.actamat.2016.11.016Search in Google Scholar
[9] Y.Lu, Y.Dong, S.Guo, L.Jiang, H.Kang, T.Wang, B.Wen, Z.Wang, J.Jie, Z.Cao, H.Ruan, T.Li: Sci. Reports, 4 (2014) 6200. PMid:25160691; 10.1038/srep06200Search in Google Scholar PubMed PubMed Central
[10] N.Liu, P.H.Wu, Z.Peng, H.F.Xiang, C.Chen, X.J.Wang, J.Zhang: Mater. Sci. Technol.133 (2017) 210. 10.1080/02670836.2016.1177985Search in Google Scholar
[11] P.H.Wu, Z.Peng, N.Liu, M.Niu, Z.X.Zhu, X.J.Wang: Mater. Trans.57 (2016) 5. 10.2320/matertrans.M2015295Search in Google Scholar
[12] P.H.Wu, N.Liu, W.Yang, Z.X.Zhu, Y.P.Lu, X.J.Wang: Mater. Sci. Eng. A642 (2015) 142. 10.1016/j.msea.2015.06.061Search in Google Scholar
[13] D.B.Miracle, O.N.Senkov: Acta Mater.122 (2016) 448. 10.1016/j.actamat.2016.08.081Search in Google Scholar
[14] Y.Zhang, T.T.Zuo, Z.Tang, M.C.Gao, K.A.Dahmen, P.K.Liaw, Z.P.Lu: Prog. Mater. Sci.61 (2014) 1. 10.1016/j.pmatsci.2013.10.001Search in Google Scholar
[15] J.W.Qiao, H.L.Jia, P.K.Liaw, Mater. Sci. Eng.R 100 (2016) 1. 10.1016/j.mser.2015.12.001Search in Google Scholar
[16] C.M.Lin, H.L.Tsai: J. Alloys Compd.489 (2010) 30. 10.1016/j.jallcom.2009.09.041Search in Google Scholar
[17] C.M.Lin, H.L.Tsai, H.Y.Bor: Intermetallics18 (2010)1244. 10.1016/j.intermet.2010.03.030Search in Google Scholar
[18] C.M.Lin, H.L.Tsai: Mater. Chem. Phys.128 (2011) 50. 10.1016/j.matchemphys.2011.02.022Search in Google Scholar
[19] C.C.Tung, J.W.Yeh, T.T.Shun, S.K.Chen, Y.S.Huang, H.C.Chen: Mater. Lett.61 (2007) 1. 10.1016/j.matlet.2006.03.140Search in Google Scholar
[20] B.S.Li, Y.P.Wang, M.X.Ren, C.Yang, H.Z.Fu: Mater. Sci. Eng. A498 (2008) 482. 10.1016/j.msea.2008.08.025Search in Google Scholar
[21] H.Y.Chen, C.W.Tsai, C.C.Tung, J.W.Yeh, T.T.Shun, C.C.Yang, S.K.Chen: Ann. Chim. Sci. Mat.31 (2006) 685. 10.3166/acsm.31.685-698Search in Google Scholar
[22] Z.Y.Rao, X.Wang, J.Zhu, X.H.Chen, L.Wang, J.J.Si, Y.D.Wu, X.D.Hui: Intermetallics77 (2016) 23. 10.1016/j.intermet.2016.06.011Search in Google Scholar
[23] Y.Zhang, Y.J.Zhou, J.P.Lin, G.L.Chen, P.K.Liaw: Adv. Eng. Mater.10 (2008) 534. 10.1002/adem.200700240Search in Google Scholar
[24] S.Guo, Q.Hu, C.Ng, C.T.Liu: Intermetallics41 (2013) 96. 10.1016/j.intermet.2013.05.002Search in Google Scholar
[25] S.Guo: Mater. Sci. Technol.31 (2015) 1223. 10.1179/1743284715Y.0000000018Search in Google Scholar
[26] Y.Lu, H.Jiang, S.Guo: Intermetallics91 (2017) 124. 10.1016/j.intermet.2017.09.001Search in Google Scholar
[27] X.Yang, Y.Zhang: Chem. Phys.132 (2012) 233. 10.1016/j.matchemphys.2011.11.021Search in Google Scholar
[28] Y.Zhang, Z.P.Lu, S.G.Ma, P.K.Liaw, Z.Tang: MRS Commun.4 (2014) 57. 10.1557/mrc.2014.11Search in Google Scholar
[29] Y.Zhang, T.T.Zuo, Z.Tang, M.C.Gao, K.A.Dahmen, P.K.Liaw, Z.P.Lu: Prog. Mater. Sci.61 (2014) 1. 10.1016/j.pmatsci.2013.10.001Search in Google Scholar
[30] A.K.Singh, N.Kumar, A.Dwivedi, A.Subramaniam: Intermetallics53 (2014) 112. 10.1016/j.intermet.2014.04.019Search in Google Scholar
[31] P.H.Wu, N.Liu, P.J.Zhou, Z.Peng, W.D.Du, X.J.Wang, Y.Pan: Mater. Sci. Technol., 32 (2016) 576–580. 10.1179/1743284715Y.0000000127Search in Google Scholar
[32] B.Ren, Z.X.Liu, D.M.Li, L.Shi, B.Cai, M.X.Wang: J. Alloys. Compd.493 (2010) 148. 10.1016/j.jallcom.2010.03.189Search in Google Scholar
[33] J.M.Zhu, H.M.Fu, H.F.Zhang, A.M.Wang, H.Li, Z.Q.Hu: Mater. Sci. Eng. A527 (2010) 6975. 10.1016/j.msea.2010.07.028Search in Google Scholar
[34] A.Takeuchi, A.Inoue: Mater. Trans.46 (2005) 2817. 10.2320/matertrans.46.2817Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of lubricant additives on the tribological behavior of aluminum alloy against steel
- First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy
- Precipitation characteristics of a nickel-based single-crystal superalloy after long-term thermal exposure
- Dynamic evolution of the metastable structure and nano-precipitation of 7055 aluminum alloy under thermal deformation
- Microstructural evolution and high-temperature compressive properties of an extruded Mg–Dy–Zn alloy sheet
- Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel
- Microstructural evolution, phase selection and properties of CoCrCuFeMnxNi high-entropy alloys
- Thermodynamic modelling of the Hf–Pt system
- Mechanical, tribological and oxidation resistance properties of Ni-based self-lubricating composite coatings at elevated temperature by APS
- Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
- Co3O4/carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance
- Short Communications
- Reduced graphene oxide–SnO nanocomposites with good visible-light photoactivity
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of lubricant additives on the tribological behavior of aluminum alloy against steel
- First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy
- Precipitation characteristics of a nickel-based single-crystal superalloy after long-term thermal exposure
- Dynamic evolution of the metastable structure and nano-precipitation of 7055 aluminum alloy under thermal deformation
- Microstructural evolution and high-temperature compressive properties of an extruded Mg–Dy–Zn alloy sheet
- Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel
- Microstructural evolution, phase selection and properties of CoCrCuFeMnxNi high-entropy alloys
- Thermodynamic modelling of the Hf–Pt system
- Mechanical, tribological and oxidation resistance properties of Ni-based self-lubricating composite coatings at elevated temperature by APS
- Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
- Co3O4/carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance
- Short Communications
- Reduced graphene oxide–SnO nanocomposites with good visible-light photoactivity
- DGM News
- DGM News