Home Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering
Article
Licensed
Unlicensed Requires Authentication

Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering

  • Behzad Sadeghi , Morteza Shamanian , Fakhreddin Ashrafizadeh , Pasquale Cavaliere and Danie le Valerini
Published/Copyright: December 18, 2017
Become an author with De Gruyter Brill

Abstract

Spark plasma sintering has been recognized in the recent past as a very useful tool capable of producing materials with high strength and low porosity when compared to the traditional powder metallurgy technologies. In addition, the possibility of producing metal-matrix composites with enhanced mechanical and wear properties has been demonstrated. Obviously, the final properties of spark plasma sintered composites depend on the reinforcement type, size and percentage. The present paper analyzes the possibility of producing spark plasma sintered aluminum-based composites with various types and sizes of reinforcement (Al2O3 nanosized and microsized particles blended with aluminum in different percentages). A strong variation in the microstructural behavior, in mechanical properties and in deformation mode has been observed by varying the type, percentage and combination of reinforcements in the aluminum matrix. The material evolution was deeply analyzed through nanoindentation, X-ray diffraction and scanning electron microscopy.


*Correspondence address, Prof. Pasquale Cavaliere, Department of Innovation Engineering, University of Salento, Via per Arnesano, Lecce 73100, Italy, Tel.: +39 0832297357, Fax: +39 0832297357, E-mail:

References

[1] K.Dash, D.Chaira, B.C.Ray: Mater. Res. Bull.48 (2013) 2535. 10.1016/j.materresbull.2013.03.014Search in Google Scholar

[2] E.Ghasali, M.Alizadeh, T.Ebadzadeh: J. Alloys Compd.655 (2016) 93. 10.1016/j.jallcom.2015.09.024Search in Google Scholar

[3] E.Ghasali, A.Pakseresht, A.Rahbari, H.Eslami-shahed, M.Alizadeh, T.Ebadzadeh: J. Alloys Compd.666 (2016) 366. 10.1016/j.jallcom.2016.01.118Search in Google Scholar

[4] C.Wolff, S.Mercier, H.Couque, A.Molinari: Mech. Mater.49 (2012) 72. 10.1016/j.mechmat.2011.12.002Search in Google Scholar

[5] Z-F.Liu, Z-H.Zhang, J-F.Lu, A.V.Korznikov, E.Korznikova, F-C.Wang: Mater. Des.64 (2014) 625. 10.1016/j.matdes.2014.08.030Search in Google Scholar

[6] Z.A.Munir, V.D.Quach: J. Am. Ceram. Soc.94 (2011) 1. 10.1111/j.1551-2916.2010.04210.xSearch in Google Scholar

[7] K.L.Firestein, S.Corthay, A.E.Steinman, A.T.Matveev, A.M.Kovalskii, I.V.Sukhorukova, D.Golberg, D.V.Shtansky: Mater. Sci. Eng. A681 (2017) 1. 10.1016/j.msea.2016.11.011Search in Google Scholar

[8] K.Babu, K.Kallip, M.Leparoux, K.A.AlOgab, X.Maeder, Y.A.Rojas Dasilva: Mater. Des.95 (2016) 534. 10.1016/j.matdes.2016.01.138Search in Google Scholar

[9] J.Zhanga, H.Shi, M.Cai, L.Liu, P.Zhai: Mater. Sci. Eng. A527 (2009) 218. 10.1016/j.msea.2009.08.067Search in Google Scholar

[10] G.A.Sweet, M.Brochu, R.L.HexemerJr., I.W.Donaldson, D.P.Bishop: Mater. Sci. Eng. A648 (2015) 123. 10.1016/j.msea.2015.09.027Search in Google Scholar

[11] D.Garbiec, M.Jurczyk, N.Levintant-Zayonts, T.Mościcki: Arch. Civ. Mech. Eng.15 (2015) 933. 10.1016/j.acme.2015.02.004Search in Google Scholar

[12] S.C.Tjong: Adv. Eng. Mater.9 (2007) 639. 10.1002/adem.200700106Search in Google Scholar

[13] O.Guillon, J.Gonzalez-Julian, B.Dargatz, T.Kessel, G.Schierning, J.Räthel, M.Herrmann: Adv. Eng. Mater.16 (2014) 830. 10.1002/adem.201300409Search in Google Scholar

[14] N.Saheb, Z.Iqbal, A.Khalil, A.S.Hakeem, N.Al Aqeeli, T.Laoui, A.Al-Qutub, R.Kirchner: J. Nanomater.2012 (2012) 18. 10.1155/2012/983470Search in Google Scholar

[15] G.Xie, O.Ohashi, M.Song, K.Furuya, T.Noda: Metall. Mater. Trans.A34 (2003) 699. 10.1007/s11661-003-0024-1Search in Google Scholar

[16] M.Tokita: Nanotech. Russia10 (2015) 261. 10.1134/S1995078015020202Search in Google Scholar

[17] D.M.Hulbert, A.Anders, J.Andersson, E.J.Lavernia, A.K.Mukherjee: Scr. Mater.60 (2009) 835. 10.1016/j.scriptamat.2008.12.059Search in Google Scholar

[18] D.M.Hulbert, A.Anders, D.V.Dudina, J.Andersson, D.Jiang, C.Unuvar, U.Anselmi-Tamburini, E.J.Lavernia, A.K.Mukherjee: J. Appl. Phys.104 (2008) 033305. 10.1063/1.2963701Search in Google Scholar

[19] S.Rudinsky, J.M.Aguirre, G.Sweet, J.Milligan, D.P.Bishop, M.Brochu: Mater. Sci. Eng.A621 (2015) 18. 10.1016/j.msea.2014.10.056Search in Google Scholar

[20] N.K.Babu, K.Kallip, M.Leparoux, K.A.AlOgab, X.Maeder, Y.A.R.Dasilva: Mater. Des.95 (2016) 534. 10.1016/j.matdes.2016.01.138Search in Google Scholar

[21] M.O.Durowoju, E.R.Sadiku, S.Diouf, M.B.Shongwe, P.A.Olubambi: Powder Technol.284 (2015) 504. 10.1016/j.powtec.2015.07.027Search in Google Scholar

[22] S.Diouf, A.Molinari: Powder Technol.221 (2012) 220. 10.1016/j.powtec.2012.01.005Search in Google Scholar

[23] S.Devaraj, S.Sankaran, R.Kumar: Acta Metall. Sin.26 (2013) 761. 10.1007/s40195-013-0159-zSearch in Google Scholar

[24] S.Decker, S.Martin, L.Krüger: Metall. Mater. Trans. A47 (2016) 170. 10.1007/s11661-015-2861-0Search in Google Scholar

[25] D.Hitchcock, R.Livingston, D.Liebenberg: J. Appl. Phys.117 (2015) 174505. 10.1063/1.4919814Search in Google Scholar

[26] B.Kieback: (2011) A review of spark plasma sintering. Proceedings of the Hagen Symposium (Hagen, Germany).Search in Google Scholar

[27] J.Garay: Annu. Rev. Mater. Res.40 (2010) 445. 10.1146/annurev-matsci-070909-104433Search in Google Scholar

[28] M.T.Khorshid, S.J.Jahromi, M.Moshksar: Mater. Des.31 (2010) 3880. 10.1016/j.matdes.2010.02.047Search in Google Scholar

[29] E.A.Olevsky, L.Froyen: J. Amer. Ceram. Soc.92 (2009) S122. 10.1111/j.1551-2916.2008.02705.xSearch in Google Scholar

[30] F.Ostovan, K.A.Matori, M.Toozandehjani, A.Oskoueian, H.M.Yusoff, R.Yunus, A.H.M.Ariff, H.J.Quah, W.F.Lim: Mater. Chem. Phys.166 (2015) 160. 10.1016/j.matchemphys.2015.09.041Search in Google Scholar

[31] C.Leon, G.Rodriguez-Ortiz, E.Aguilar-Reyes: Mater. Sci. Eng. A526 (2009) 106. 10.1016/j.msea.2009.07.002Search in Google Scholar

[32] G.Pharr, A.Bolshakov: J. Mater. Res.17 (2002) 2660. 10.1557/JMR.2002.0386Search in Google Scholar

[33] J.Luo, R.Stevens: Ceram. Int.25 (1999) 281. 10.1016/S0272-8842(98)00037-6Search in Google Scholar

[34] J.Pelleg: (2012) Mechanical properties of materials. Springer Science & Business Media. 10.1007/978-94-007-4342-7Search in Google Scholar

[35] S.C.Tjong: Processing and Deformation Characteristics of Metals Reinforced with Ceramic Nanoparticles. In: Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications (2013) pp. 269304. 10.1016/B978-0-12-407796-6.00008-7Search in Google Scholar

[36] Y.Hirata, H.Fujita, T.Shimonosono: Ceram. Int.43 (2017) 1895. 10.1016/j.ceramint.2016.10.149Search in Google Scholar

[37] K.Deng, J.Shi, C.Wang, X.Wang, Y.Wu, K.Nie, K.Wu: Composites Part A43 (2012) 1280. 10.1016/j.compositesa.2012.01.004Search in Google Scholar

Received: 2017-05-09
Accepted: 2017-06-13
Published Online: 2017-12-18
Published in Print: 2018-01-09

© 2018, Carl Hanser Verlag, München

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111570/html?lang=en
Scroll to top button