Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering
-
Behzad Sadeghi
, Morteza Shamanian , Fakhreddin Ashrafizadeh , Pasquale Cavaliere and Danie le Valerini
Abstract
Spark plasma sintering has been recognized in the recent past as a very useful tool capable of producing materials with high strength and low porosity when compared to the traditional powder metallurgy technologies. In addition, the possibility of producing metal-matrix composites with enhanced mechanical and wear properties has been demonstrated. Obviously, the final properties of spark plasma sintered composites depend on the reinforcement type, size and percentage. The present paper analyzes the possibility of producing spark plasma sintered aluminum-based composites with various types and sizes of reinforcement (Al2O3 nanosized and microsized particles blended with aluminum in different percentages). A strong variation in the microstructural behavior, in mechanical properties and in deformation mode has been observed by varying the type, percentage and combination of reinforcements in the aluminum matrix. The material evolution was deeply analyzed through nanoindentation, X-ray diffraction and scanning electron microscopy.
References
[1] K.Dash, D.Chaira, B.C.Ray: Mater. Res. Bull.48 (2013) 2535. 10.1016/j.materresbull.2013.03.014Search in Google Scholar
[2] E.Ghasali, M.Alizadeh, T.Ebadzadeh: J. Alloys Compd.655 (2016) 93. 10.1016/j.jallcom.2015.09.024Search in Google Scholar
[3] E.Ghasali, A.Pakseresht, A.Rahbari, H.Eslami-shahed, M.Alizadeh, T.Ebadzadeh: J. Alloys Compd.666 (2016) 366. 10.1016/j.jallcom.2016.01.118Search in Google Scholar
[4] C.Wolff, S.Mercier, H.Couque, A.Molinari: Mech. Mater.49 (2012) 72. 10.1016/j.mechmat.2011.12.002Search in Google Scholar
[5] Z-F.Liu, Z-H.Zhang, J-F.Lu, A.V.Korznikov, E.Korznikova, F-C.Wang: Mater. Des.64 (2014) 625. 10.1016/j.matdes.2014.08.030Search in Google Scholar
[6] Z.A.Munir, V.D.Quach: J. Am. Ceram. Soc.94 (2011) 1. 10.1111/j.1551-2916.2010.04210.xSearch in Google Scholar
[7] K.L.Firestein, S.Corthay, A.E.Steinman, A.T.Matveev, A.M.Kovalskii, I.V.Sukhorukova, D.Golberg, D.V.Shtansky: Mater. Sci. Eng. A681 (2017) 1. 10.1016/j.msea.2016.11.011Search in Google Scholar
[8] K.Babu, K.Kallip, M.Leparoux, K.A.AlOgab, X.Maeder, Y.A.Rojas Dasilva: Mater. Des.95 (2016) 534. 10.1016/j.matdes.2016.01.138Search in Google Scholar
[9] J.Zhanga, H.Shi, M.Cai, L.Liu, P.Zhai: Mater. Sci. Eng. A527 (2009) 218. 10.1016/j.msea.2009.08.067Search in Google Scholar
[10] G.A.Sweet, M.Brochu, R.L.HexemerJr., I.W.Donaldson, D.P.Bishop: Mater. Sci. Eng. A648 (2015) 123. 10.1016/j.msea.2015.09.027Search in Google Scholar
[11] D.Garbiec, M.Jurczyk, N.Levintant-Zayonts, T.Mościcki: Arch. Civ. Mech. Eng.15 (2015) 933. 10.1016/j.acme.2015.02.004Search in Google Scholar
[12] S.C.Tjong: Adv. Eng. Mater.9 (2007) 639. 10.1002/adem.200700106Search in Google Scholar
[13] O.Guillon, J.Gonzalez-Julian, B.Dargatz, T.Kessel, G.Schierning, J.Räthel, M.Herrmann: Adv. Eng. Mater.16 (2014) 830. 10.1002/adem.201300409Search in Google Scholar
[14] N.Saheb, Z.Iqbal, A.Khalil, A.S.Hakeem, N.Al Aqeeli, T.Laoui, A.Al-Qutub, R.Kirchner: J. Nanomater.2012 (2012) 18. 10.1155/2012/983470Search in Google Scholar
[15] G.Xie, O.Ohashi, M.Song, K.Furuya, T.Noda: Metall. Mater. Trans.A34 (2003) 699. 10.1007/s11661-003-0024-1Search in Google Scholar
[16] M.Tokita: Nanotech. Russia10 (2015) 261. 10.1134/S1995078015020202Search in Google Scholar
[17] D.M.Hulbert, A.Anders, J.Andersson, E.J.Lavernia, A.K.Mukherjee: Scr. Mater.60 (2009) 835. 10.1016/j.scriptamat.2008.12.059Search in Google Scholar
[18] D.M.Hulbert, A.Anders, D.V.Dudina, J.Andersson, D.Jiang, C.Unuvar, U.Anselmi-Tamburini, E.J.Lavernia, A.K.Mukherjee: J. Appl. Phys.104 (2008) 033305. 10.1063/1.2963701Search in Google Scholar
[19] S.Rudinsky, J.M.Aguirre, G.Sweet, J.Milligan, D.P.Bishop, M.Brochu: Mater. Sci. Eng.A621 (2015) 18. 10.1016/j.msea.2014.10.056Search in Google Scholar
[20] N.K.Babu, K.Kallip, M.Leparoux, K.A.AlOgab, X.Maeder, Y.A.R.Dasilva: Mater. Des.95 (2016) 534. 10.1016/j.matdes.2016.01.138Search in Google Scholar
[21] M.O.Durowoju, E.R.Sadiku, S.Diouf, M.B.Shongwe, P.A.Olubambi: Powder Technol.284 (2015) 504. 10.1016/j.powtec.2015.07.027Search in Google Scholar
[22] S.Diouf, A.Molinari: Powder Technol.221 (2012) 220. 10.1016/j.powtec.2012.01.005Search in Google Scholar
[23] S.Devaraj, S.Sankaran, R.Kumar: Acta Metall. Sin.26 (2013) 761. 10.1007/s40195-013-0159-zSearch in Google Scholar
[24] S.Decker, S.Martin, L.Krüger: Metall. Mater. Trans. A47 (2016) 170. 10.1007/s11661-015-2861-0Search in Google Scholar
[25] D.Hitchcock, R.Livingston, D.Liebenberg: J. Appl. Phys.117 (2015) 174505. 10.1063/1.4919814Search in Google Scholar
[26] B.Kieback: (2011) A review of spark plasma sintering. Proceedings of the Hagen Symposium (Hagen, Germany).Search in Google Scholar
[27] J.Garay: Annu. Rev. Mater. Res.40 (2010) 445. 10.1146/annurev-matsci-070909-104433Search in Google Scholar
[28] M.T.Khorshid, S.J.Jahromi, M.Moshksar: Mater. Des.31 (2010) 3880. 10.1016/j.matdes.2010.02.047Search in Google Scholar
[29] E.A.Olevsky, L.Froyen: J. Amer. Ceram. Soc.92 (2009) S122. 10.1111/j.1551-2916.2008.02705.xSearch in Google Scholar
[30] F.Ostovan, K.A.Matori, M.Toozandehjani, A.Oskoueian, H.M.Yusoff, R.Yunus, A.H.M.Ariff, H.J.Quah, W.F.Lim: Mater. Chem. Phys.166 (2015) 160. 10.1016/j.matchemphys.2015.09.041Search in Google Scholar
[31] C.Leon, G.Rodriguez-Ortiz, E.Aguilar-Reyes: Mater. Sci. Eng. A526 (2009) 106. 10.1016/j.msea.2009.07.002Search in Google Scholar
[32] G.Pharr, A.Bolshakov: J. Mater. Res.17 (2002) 2660. 10.1557/JMR.2002.0386Search in Google Scholar
[33] J.Luo, R.Stevens: Ceram. Int.25 (1999) 281. 10.1016/S0272-8842(98)00037-6Search in Google Scholar
[34] J.Pelleg: (2012) Mechanical properties of materials. Springer Science & Business Media. 10.1007/978-94-007-4342-7Search in Google Scholar
[35] S.C.Tjong: Processing and Deformation Characteristics of Metals Reinforced with Ceramic Nanoparticles. In: Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications (2013) pp. 269–304. 10.1016/B978-0-12-407796-6.00008-7Search in Google Scholar
[36] Y.Hirata, H.Fujita, T.Shimonosono: Ceram. Int.43 (2017) 1895. 10.1016/j.ceramint.2016.10.149Search in Google Scholar
[37] K.Deng, J.Shi, C.Wang, X.Wang, Y.Wu, K.Nie, K.Wu: Composites Part A43 (2012) 1280. 10.1016/j.compositesa.2012.01.004Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusion behaviour of Pt in platinum aluminide coatings during thermal cycles
- Ternary Al–Mo–Y phase diagram and the new phase Al4Mo2Y
- Evaluation of the thixoformability of 318.1 aluminum alloy
- High temperature tensile behavior of Mg-2Al and Mg-6Al alloys
- Anisotropic thermomechanical behavior of AA6082 aluminum alloy Al–Mg–Si–Mn
- Significant enhancement of bond strength in the roll bonding process using Pb particles
- Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering
- Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni–Al system
- Elaboration of a triphasic calcium phosphate and silica nanocomposite for maxillary grafting and deposition on titanium implants
- Short Communications
- Microstructural effects of isothermal aging on a doped SAC solder alloy
- Two-stage synthesis of ultrafine powder of chromium carbide
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusion behaviour of Pt in platinum aluminide coatings during thermal cycles
- Ternary Al–Mo–Y phase diagram and the new phase Al4Mo2Y
- Evaluation of the thixoformability of 318.1 aluminum alloy
- High temperature tensile behavior of Mg-2Al and Mg-6Al alloys
- Anisotropic thermomechanical behavior of AA6082 aluminum alloy Al–Mg–Si–Mn
- Significant enhancement of bond strength in the roll bonding process using Pb particles
- Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering
- Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni–Al system
- Elaboration of a triphasic calcium phosphate and silica nanocomposite for maxillary grafting and deposition on titanium implants
- Short Communications
- Microstructural effects of isothermal aging on a doped SAC solder alloy
- Two-stage synthesis of ultrafine powder of chromium carbide
- DGM News
- DGM News