Home Launching particle to constant reinforcement ratio as a parameter for improving the nanoreinforcement distribution and tensile strength of aluminum nanometal matrix composites
Article
Licensed
Unlicensed Requires Authentication

Launching particle to constant reinforcement ratio as a parameter for improving the nanoreinforcement distribution and tensile strength of aluminum nanometal matrix composites

Paper presented at “International Conference on Advances in Design & Manufacturing” (ICAD&M14), 5–7 December 2014, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
  • K. Sita Rama Raju , V. Ramachandra Raju , P. Rama Murthy Raju and Partha Ghosal
Published/Copyright: August 7, 2015
Become an author with De Gruyter Brill

Abstract

Pelletization of ball milled powder, although a better technique for distributing nanoreinforcements into the metal melt, increases the production line. Here, we report our attempt to improve the distribution of nanoreinforcements without increasing the production line. We observed the effect of increase in a novel parameter, launching particle to constant reinforcement ratio (by weight; 1.5 wt.% Al2O3), on the nanoreinforcement distribution and ultimate strength of composites fabricated by stir casting. The medium used for launching the nanoreinforcements into the Al–Cu matrix is aluminum powder prepared by ball milling. An increase in the launching particle to constant reinforcement ratio leads to an improvement in the nanoreinforcement distribution and tensile strength of the composite. The X-ray maps indicate the absence of iron contamination and iron intermetallics.


* Correspondence address, Assistant Professor K. Sita Rama Raju, Mechanical Engineering department, S.R.K.R Engineering College, China Amiram, Bhimavaram, W.G (District), Andhra Pradesh, India, Tel.: +919440639106, E-mail:

References

[1] I.N. Murthy , D.V.Rao, J.B.Rao: Mater. Des.35 (2012) 55. 10.1016/j.matdes.2011.10.019Search in Google Scholar

[2] Z. Lin , Q.Han, J.Li: Composites B42 (2011) 2080. 10.1016/j.compositesb.2011.04.004Search in Google Scholar

[3] M.K. Akbari , H.R.Baharvandi, O.Mirzaee: Composites B52 (2013) 262. 10.1016/j.compositesb.2013.04.038Search in Google Scholar

[4] M.K. Akbari , H.R.Baharvandi, O.Mirzaee: Composites B55 (2013) 426. 10.1016/j.compositesb.2013.07.008Search in Google Scholar

[5] X. Zeng , G.Zhou, Q.Xu, Y.Xiong, C.Luo, J.Wu: Mater. Sci. Eng. A527 (2010) 5335. 10.1016/j.msea.2010.05.005Search in Google Scholar

[6] S. Tahamtan , A.Halvee, M.Emamy, M.S.Zabihi: Mater. Des.49 (2013) 347. 10.1016/j.matdes.2013.01.032Search in Google Scholar

[7] J.A. Taylor , G.B.Schaffer, D.H.John: Metall. Mater. Trans. A30 (1999) 1643. 10.1007/s11661-999-0101-1Search in Google Scholar

[8] S.A. Sajjadi , H.R.Ezatpour, H.Beygi: Mater. Sci. Eng. A528 (2011) 8765. 10.1016/j.msea.2011.08.052Search in Google Scholar

[9] A. Mazahery , H.Abdizadelu, H.R.Baharvandi: Mater. Sci. Eng. A518 (2009) 61. 10.1016/j.msea.2009.04.014Search in Google Scholar

[10] N. Valibeygloo , R.A.Khosroshahi, R.T.Mousavian: Int. J. Min. Met. Mater.20 (2013) 978. 10.1007/s12613-013-0824-2Search in Google Scholar

[11] K.S. Geoffrey : Met. Castings8 (2014) 7.Search in Google Scholar

[12] S.C. Wang , M.J.Starink: Proc. Int. Mater. Rev.50 (2005) 193. 10.1179/174328005X14357Search in Google Scholar

[13] J.V. Kloet , A.W.Hassel, M.Stratmann: Z. Phys. Chem.219 (2005) 1505. 10.1524/zpch.2005.219.11.1505Search in Google Scholar

Received: 2014-12-31
Accepted: 2015-03-11
Published Online: 2015-08-07
Published in Print: 2015-08-11

© 2015, Carl Hanser Verlag, München

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111246/html?lang=en
Scroll to top button