Abstract
The aim of this paper was to obtain the regression equation of the bonding strength of sprayed coatings vs. acoustic emission (AE) signal. FeCrBSi coating, Al2O3-40 wt.% TiO2 (AT40) coating and Al2O3 coating were prepared using an atmospheric plasma spraying system. The microstructures and properties of the coatings were characterized. The coatings exhibited typical laminate structure with low porosity and good bonding interface. The AE signals during indentation testing were abstracted and investigated. AE energy was more sensitive to the coating cracking failure than AE amplitude. Moreover, the energy of AE burst signal had a close positive relationship with coating bonding strength. The distribution characteristic of AE peak energy was discussed based on the Weibull distribution. The best regression equations for the three coatings were obtained to predict the bonding strengths of sprayed coatings based on AE burst signal energy for similar coating/substrate systems.
References
[1] L.N. Wang, J.L. Luo: Mater. Charact. 62 (2011) 1076. DOI:10.1016/j.matchar.2011.01.01010.1016/j.matchar.2011.01.010Suche in Google Scholar
[2] R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Haug, J.P. Michler: Thin Solid Films 469–470 (2004) 206.10.1016/j.tsf.2004.08.096Suche in Google Scholar
[3] J.V. Stebut, F. Lapostolle, M. Bucsa, H. Vallen: Surf. Coat. Technol. 116–119 (1999) 160.10.1016/S0257-8972(99)00211-XSuche in Google Scholar
[4] L.P. Zhou, M.P. Wang, R. Wang, Z. Li, J.J. Zhu, K. Peng, D.Y. Li, S.L. Li: Trans. Nonferrous Met. Soc. China 18 (2008) 372. DOI:10.1016/S1003–6326(08)60027–810.1016/S1003–63260860027–8Suche in Google Scholar
[5] C. Guerra, C.J. Schwartz: Tribol. Lett. 44 (2011) 223. DOI:10.1007/s11249-011-9840-410.1007/s11249-011-9840-4Suche in Google Scholar
[6] R. Ahmed, N.H. Faisal, A.M. Paradowska, M.E. Fitzpatrick: J. Therm. Spray. Technol. 21 (2012) 23. DOI:10.1007/s11666-011-9680-710.1007/s11666-011-9680-7Suche in Google Scholar
[7] P. Ctibor, R. Lechnerova, V. Benes: Mater. Charact. 56 (2006) 297. DOI:10.1016/j.matchar.2005.11.01610.1016/j.matchar.2005.11.016Suche in Google Scholar
[8] C.J. Li, G.J. Yang, C.X. Li: J. Therm. Spray. Technol. 22 (2013) 192. DOI:10.1007/s11666-012-9864-910.1007/s11666-012-9864-9Suche in Google Scholar
[9] C.K. Tan, P. Irving, D. Mba: Mech. Syst. Sig. Process. 21 (2007) 208. DOI:10.1016/j.ymssp.2005.09.01510.1016/j.ymssp.2005.09.015Suche in Google Scholar
[10] B. Eftekharnejad, D. Mba: Appl. Acoust. 70 (2009) 547. DOI:10.1016/j.apacoust.2008.07.00610.1016/j.apacoust.2008.07.006Suche in Google Scholar
[11] F. Andrew, P. Nicholas, W.F.R. Jonathan: Eng. Geol. 116 (2010) 139. DOI:10.1016/j.enggeo.2010.08.00310.1016/j.enggeo.2010.08.003Suche in Google Scholar
[12] P.R. Simon, D. Thierry: Int. J. Approximate Reasoning 35 (2004) 1. DOI:10.1016/S0888-613X(03)00056-210.1016/S0888-613X(03)00056-2Suche in Google Scholar
[13] X.C. Zhang, B.S. Xu, Y.X. Wu, F.Z. Xuan, S.T. Tu: Appl. Surf. Sci. 254 (2008) 3879. DOI:10.1016/j.apsusc.2007.10.05210.1016/j.apsusc.2007.10.052Suche in Google Scholar
[14] D.W. Schwach, Y.B. Guo: Int. J. Fatigue 28 (2006) 1838. DOI:10.1016/j.ijfatigue.2005.12.00210.1016/j.ijfatigue.2005.12.002Suche in Google Scholar
[15] R. Unnthorsson, T.P. Runarsson, M.T. Jonsson: Int. J. Fatigue 30 (2008) 11. DOI:10.1016/j.ijfatigue.2007.02.02410.1016/j.ijfatigue.2007.02.024Suche in Google Scholar
[16] J.R. Ge, K.J. Deng, W.Q. Cai, J.G. Yu, X.Q. Liu, J.B. Zhou: J. Colloid Interf. Sci. 401 (2013) 34. DOI:10.1016/j.jcis.2013.03.02810.1016/j.jcis.2013.03.028Suche in Google Scholar PubMed
[17] J. Tao, X.Z. Guo, Z.D. Huang, H.B. Liu, T. Wang: Nucl. Eng. Des. 259 (2013) 65. DOI:10.1016/j.nucengdes.2013.02.04110.1016/j.nucengdes.2013.02.041Suche in Google Scholar
[18] J.S. Kwak, M.K. Ha: J. Mater. Process. Technol. 147 (2004) 65. DOI:10.1016/j.jmatprotec.2003.11.01610.1016/j.jmatprotec.2003.11.016Suche in Google Scholar
[19] M. Ahadi, M.S. Bakhtiar: Appl. Acoust. 71 (2010) 634. DOI:10.1016/j.apacoust.2010.02.00610.1016/j.apacoust.2010.02.006Suche in Google Scholar
[20] L. Prchlik, J. Pisacka, S. Sampath: Mat. Sci. Eng. A 360 (2003) 264. DOI:10.1016/S0921-5093(03)00414-310.1016/S0921-5093(03)00414-3Suche in Google Scholar
[21] B.R. Lawn, Y. Deng, P. Miranda, A. Pajares, H. Chai, D.K. Kim: J. Mater. Res. 17 (2002) 3019. DOI:10.1557/JMR.2002.044010.1557/JMR.2002.0440Suche in Google Scholar
[22] A. Suyuthi, B.J. Leira, K. Riska: Struct. Saf. 40 (2013) 1. DOI:10.1016/j.strusafe.2012.09.00310.1016/j.strusafe.2012.09.003Suche in Google Scholar
[23] N. Ganesan, J.B. Raj, A.P. Shashikala: Constr. Build. Mater. 44 (2013) 7. 10.1016/j.conbuildmat.2013.02.077Suche in Google Scholar
[24] A. Barabadi: Electr. Pow. Syst. Res. 101 (2013) 96. DOI:10.1016/j.epsr.2013.03.01010.1016/j.epsr.2013.03.010Suche in Google Scholar
[25] J. Mata: Eng. Struct. 33 (2011) 903. DOI:10.1016/j.engstruct.2010.12.01110.1016/j.engstruct.2010.12.011Suche in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences