Startseite Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal

  • Yanan Song , Binshi Xu , Haidou Wang EMAIL logo , Ming Liu und Zhongyu Piao
Veröffentlicht/Copyright: 27. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this paper was to obtain the regression equation of the bonding strength of sprayed coatings vs. acoustic emission (AE) signal. FeCrBSi coating, Al2O3-40 wt.% TiO2 (AT40) coating and Al2O3 coating were prepared using an atmospheric plasma spraying system. The microstructures and properties of the coatings were characterized. The coatings exhibited typical laminate structure with low porosity and good bonding interface. The AE signals during indentation testing were abstracted and investigated. AE energy was more sensitive to the coating cracking failure than AE amplitude. Moreover, the energy of AE burst signal had a close positive relationship with coating bonding strength. The distribution characteristic of AE peak energy was discussed based on the Weibull distribution. The best regression equations for the three coatings were obtained to predict the bonding strengths of sprayed coatings based on AE burst signal energy for similar coating/substrate systems.


Dr. Haidou Wang National Key Laboratory for Remanufacturing Academy of Armored Forces Engineering Beijing Fengtai District Beijing, 100072 China Tel.: +86-10-66718475 Fax: +86-10-66718475

References

[1] L.N. Wang, J.L. Luo: Mater. Charact. 62 (2011) 1076. DOI:10.1016/j.matchar.2011.01.01010.1016/j.matchar.2011.01.010Suche in Google Scholar

[2] R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Haug, J.P. Michler: Thin Solid Films 469–470 (2004) 206.10.1016/j.tsf.2004.08.096Suche in Google Scholar

[3] J.V. Stebut, F. Lapostolle, M. Bucsa, H. Vallen: Surf. Coat. Technol. 116–119 (1999) 160.10.1016/S0257-8972(99)00211-XSuche in Google Scholar

[4] L.P. Zhou, M.P. Wang, R. Wang, Z. Li, J.J. Zhu, K. Peng, D.Y. Li, S.L. Li: Trans. Nonferrous Met. Soc. China 18 (2008) 372. DOI:10.1016/S1003–6326(08)60027–810.1016/S1003–63260860027–8Suche in Google Scholar

[5] C. Guerra, C.J. Schwartz: Tribol. Lett. 44 (2011) 223. DOI:10.1007/s11249-011-9840-410.1007/s11249-011-9840-4Suche in Google Scholar

[6] R. Ahmed, N.H. Faisal, A.M. Paradowska, M.E. Fitzpatrick: J. Therm. Spray. Technol. 21 (2012) 23. DOI:10.1007/s11666-011-9680-710.1007/s11666-011-9680-7Suche in Google Scholar

[7] P. Ctibor, R. Lechnerova, V. Benes: Mater. Charact. 56 (2006) 297. DOI:10.1016/j.matchar.2005.11.01610.1016/j.matchar.2005.11.016Suche in Google Scholar

[8] C.J. Li, G.J. Yang, C.X. Li: J. Therm. Spray. Technol. 22 (2013) 192. DOI:10.1007/s11666-012-9864-910.1007/s11666-012-9864-9Suche in Google Scholar

[9] C.K. Tan, P. Irving, D. Mba: Mech. Syst. Sig. Process. 21 (2007) 208. DOI:10.1016/j.ymssp.2005.09.01510.1016/j.ymssp.2005.09.015Suche in Google Scholar

[10] B. Eftekharnejad, D. Mba: Appl. Acoust. 70 (2009) 547. DOI:10.1016/j.apacoust.2008.07.00610.1016/j.apacoust.2008.07.006Suche in Google Scholar

[11] F. Andrew, P. Nicholas, W.F.R. Jonathan: Eng. Geol. 116 (2010) 139. DOI:10.1016/j.enggeo.2010.08.00310.1016/j.enggeo.2010.08.003Suche in Google Scholar

[12] P.R. Simon, D. Thierry: Int. J. Approximate Reasoning 35 (2004) 1. DOI:10.1016/S0888-613X(03)00056-210.1016/S0888-613X(03)00056-2Suche in Google Scholar

[13] X.C. Zhang, B.S. Xu, Y.X. Wu, F.Z. Xuan, S.T. Tu: Appl. Surf. Sci. 254 (2008) 3879. DOI:10.1016/j.apsusc.2007.10.05210.1016/j.apsusc.2007.10.052Suche in Google Scholar

[14] D.W. Schwach, Y.B. Guo: Int. J. Fatigue 28 (2006) 1838. DOI:10.1016/j.ijfatigue.2005.12.00210.1016/j.ijfatigue.2005.12.002Suche in Google Scholar

[15] R. Unnthorsson, T.P. Runarsson, M.T. Jonsson: Int. J. Fatigue 30 (2008) 11. DOI:10.1016/j.ijfatigue.2007.02.02410.1016/j.ijfatigue.2007.02.024Suche in Google Scholar

[16] J.R. Ge, K.J. Deng, W.Q. Cai, J.G. Yu, X.Q. Liu, J.B. Zhou: J. Colloid Interf. Sci. 401 (2013) 34. DOI:10.1016/j.jcis.2013.03.02810.1016/j.jcis.2013.03.028Suche in Google Scholar PubMed

[17] J. Tao, X.Z. Guo, Z.D. Huang, H.B. Liu, T. Wang: Nucl. Eng. Des. 259 (2013) 65. DOI:10.1016/j.nucengdes.2013.02.04110.1016/j.nucengdes.2013.02.041Suche in Google Scholar

[18] J.S. Kwak, M.K. Ha: J. Mater. Process. Technol. 147 (2004) 65. DOI:10.1016/j.jmatprotec.2003.11.01610.1016/j.jmatprotec.2003.11.016Suche in Google Scholar

[19] M. Ahadi, M.S. Bakhtiar: Appl. Acoust. 71 (2010) 634. DOI:10.1016/j.apacoust.2010.02.00610.1016/j.apacoust.2010.02.006Suche in Google Scholar

[20] L. Prchlik, J. Pisacka, S. Sampath: Mat. Sci. Eng. A 360 (2003) 264. DOI:10.1016/S0921-5093(03)00414-310.1016/S0921-5093(03)00414-3Suche in Google Scholar

[21] B.R. Lawn, Y. Deng, P. Miranda, A. Pajares, H. Chai, D.K. Kim: J. Mater. Res. 17 (2002) 3019. DOI:10.1557/JMR.2002.044010.1557/JMR.2002.0440Suche in Google Scholar

[22] A. Suyuthi, B.J. Leira, K. Riska: Struct. Saf. 40 (2013) 1. DOI:10.1016/j.strusafe.2012.09.00310.1016/j.strusafe.2012.09.003Suche in Google Scholar

[23] N. Ganesan, J.B. Raj, A.P. Shashikala: Constr. Build. Mater. 44 (2013) 7. 10.1016/j.conbuildmat.2013.02.077Suche in Google Scholar

[24] A. Barabadi: Electr. Pow. Syst. Res. 101 (2013) 96. DOI:10.1016/j.epsr.2013.03.01010.1016/j.epsr.2013.03.010Suche in Google Scholar

[25] J. Mata: Eng. Struct. 33 (2011) 903. DOI:10.1016/j.engstruct.2010.12.01110.1016/j.engstruct.2010.12.011Suche in Google Scholar

Received: 2014-04-08
Accepted: 2014-09-24
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111169/pdf?lang=de
Button zum nach oben scrollen