Abstract
Graphene has gained much significance for its potential applications in optics and electronics owing to its unique physical and chemical properties. Nevertheless, its gapless band structure greatly limits its wider application in optoelectronic devices. The present study seeks to explore chemical functionalization as an effective method to tune the properties of graphene. Covalent modification of graphene by aryl diazonium salt of a photosensitive functional group (azobenzene) has been used to achieve this goal. This is based on the fact that graphene is a two-dimensional, atomically thin lattice of sp2-bonded carbon atoms, therefore, its properties can be modulated by modifying the underlying dielectric surface with a self-assembled monolayer resulting in doping control. In the study, a clear difference in the rate of electron-transfer reactions with the photosensitive functional group is shown for monolayer graphene supported on SiO2/Si substrates and organic molecule functionalized SiO2/Si substrates. Graphene supported on SiO2/ Si is more reactive towards functionalization than graphene on organic molecule functionalized surfaces, as shown by Raman spectroscopy. The transport characteristics of functionalized graphene on conventional SiO2/Si substrates as well as substrates modified with organic molecule octadecyltrichlorosilane self-assembled monolayers are also explored and compared.
References
[1] A.K. Geim: Science 324 (2009) 1530. DOI:10.1126/science.115887710.1126/science.1158877Search in Google Scholar PubMed
[2] A.H. Castro, N.F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim: Rev. Mod. Phys. 81 (2009) 109. DOI:10.1103/RevModPhys.81.10910.1103/RevModPhys.81.109Search in Google Scholar
[3] F. Schwierz: Nat. Nanotechnol. 5 (2010) 487. DOI:10.1038/nnano.2010.8910.1038/nnano.2010.89Search in Google Scholar PubMed
[4] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj: Angew. Chem. Int. Ed. 48 (2009) 7752. DOI:10.1002/anie.20080542410.1002/anie.200805424Search in Google Scholar PubMed
[5] E. Bekyarova: J. Am. Chem. Soc. 131 (2009) 1336. DOI:10.1021/ja805732710.1021/ja8057327Search in Google Scholar PubMed
[6] D.C. Elias: Science 323 (2009) 610. DOI:10.1126/science.116713010.1126/science.1167130Search in Google Scholar PubMed
[7] Q.H. Wang, M.C. Hersam: Nano Lett. 11 (2010) 589. DOI:10.1021/nl103590j10.1021/nl103590jSearch in Google Scholar PubMed
[8] W. Chen, S. Chen, D.C. Qi, X.Y. Gao, A.T.S. Wee: J. Am. Chem. Soc. 129 (2007) 10418. DOI:10.1021/ja067712v10.1021/ja067712vSearch in Google Scholar PubMed
[9] Q.H. Wang, M.C. Hersam: Nat. Chem. 1 (2009) 206. DOI:10.1038/nchem.16210.1038/nchem.162Search in Google Scholar PubMed PubMed Central
[10] M.F. Craciun, I. Khrapach, M.D. Barnes, S. Russo: J. Phys. Condens. Matter 25 (2013) 423201. DOI:10.1088/0953-8984/25/42/42320110.1088/0953-8984/25/42/423201Search in Google Scholar PubMed
[11] Z. Jin: Chem. Mater. 23 (2011) 3362. DOI:10.1021/cm102518810.1021/cm1025188Search in Google Scholar
[12] S. Niyogi: Nano Lett. 10 (2010) 4061. DOI:10.1021/nl102112810.1021/nl1021128Search in Google Scholar PubMed
[13] R. Sharma, J.H. Baik, C.J. Perera, M.S. Strano: Nano Lett. 10 (2010)398. DOI:10.1021/nl902741x10.1021/nl902741xSearch in Google Scholar PubMed PubMed Central
[14] M.Z. Hossain, M.A. Walsh, M.C. Hersam: J. Am. Chem. Soc. 132 (2010) 15399. DOI:10.1021/ja107085n10.1021/ja107085nSearch in Google Scholar PubMed
[15] D.B. Farmer: Nano Lett. 9 (2009) 388. DOI:10.1021/nl803214a10.1021/nl803214aSearch in Google Scholar PubMed
[16] J.R. Lomeda, C.D. Doyle, D.V. Kosynkin, W.F. Hwang, J.M. Tour: J. Am. Chem. Soc. 130 (2008) 16201. DOI:10.1021/ja806499w10.1021/ja806499wSearch in Google Scholar PubMed
[17] A. Sinitskii: ACS Nano 4 (2010) 1949. DOI:10.1021/nn100306r10.1021/nn100306rSearch in Google Scholar PubMed
[18] J.M. Englert: Nat. Chem. 3 (2011) 279. DOI:10.1038/nchem.101010.1038/nchem.1010Search in Google Scholar PubMed
[19] D.B. Farmer, Y.M. Lin, A. Afzali-Ardakani, P. Avouris: Appl. Phys. Lett. 94 (2009) 213106-1. DOI:10.1063/1.314286510.1063/1.3142865Search in Google Scholar
[20] X.Y. Fan, R. Nouchi, L.C. Yin, K. Tanigaki: Nanotechnology 21 (2010) 475208. DOI:10.1088/0957-4484/21/10/10560210.1088/0957-4484/21/10/105602Search in Google Scholar PubMed
[21] H. Zhang: Nano Lett. 11 (2011) 4047. DOI:10.1021/nl102144210.1021/nl1021442Search in Google Scholar PubMed
[22] J.H. Chen: Nat. Phys. 4 (2008) 377. DOI:10.1038/nphys77710.1038/nphys777Search in Google Scholar
[23] Y. Zhang, V.W. Brar, C. Girit, A. Zettl, M.F. Crommie: Nat. Phys. 5 (2009) 722. DOI:10.1038/nphys127010.1038/nphys1270Search in Google Scholar
[24] X. Du, I. Skachko, A. Barker, E.Y. Andrei: Nat. Nanotech. 3 (2008) 491. DOI:10.1038/nnano.2008.19910.1038/nnano.2008.199Search in Google Scholar PubMed
[25] K.I. Bolotin: Solid State Commun. 146 (2008) 351. DOI:10.1016/j.ssc.2008.02.02410.1016/j.ssc.2008.02.024Search in Google Scholar
[26] M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, X. Lin, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, L. Mai: J. Am. Chem. Soc. 135 (2013) 18176. DOI:10.1021/ja307926g10.1021/ja307926gSearch in Google Scholar PubMed
[27] X. Tian, X. Xua, H. Liang, Q. Wei, M. Yan, X. Lin, Y. Zhao, C. Yang: J. Power Sources 255 (2014) 235.DOI:10.1016/j.jpowsour.2014.01.01710.1016/j.jpowsour.2014.01.017Search in Google Scholar
[28] C.R. Dean: Nat. Nanotech. 5 (2010) 722. DOI:10.1038/nnano.2010.17210.1038/nnano.2010.172Search in Google Scholar PubMed
[29] J.M.X. Xue: Nat. Mater. 10 (2011) 282. DOI:10.1038/nmat296810.1038/nmat2968Search in Google Scholar PubMed
[30] K. Yokota, K. Takai, T. Enoki: Nano Lett. 11 (2011) 3669. DOI:10.1021/nl201607t10.1021/nl201607tSearch in Google Scholar PubMed
[31] Z. Yan: ACS Nano 5 (2011)1535. DOI:10.1021/nn103484510.1021/nn1034845Search in Google Scholar PubMed
[32] T. Hugel, N.B. Holland, A. Cattani, L. Moroder, M. Seitz, H.E. Gaub: Science 296 (2002) 1103. DOI:10.1126/science.106985610.1126/science.1069856Search in Google Scholar PubMed
[33] C. Zhang, M.H. Du, H.P. Cheng, X.G. Zhang, A.E. Roitberg, J.L. Krause: Phys. Rev. Lett. 92 (2004) 158301. DOI:10.1103/PhysRevLett.92.05410110.1103/PhysRevLett.92.054101Search in Google Scholar PubMed
[34] C. Zhang, Y. He, H.P. Cheng, Y. Xue, M.A. Ratner, X.G. Zhang, P. Krstic: Phys. Rev. B. 73 (2006) 125445. DOI:10.1103/PhysRevB.73.11340310.1103/PhysRevB.73.113403Search in Google Scholar
[35] M. del Valle, R. Gutiérrez, C. Tejedor, G. Cuniberti: Nat. Nanotechnol. 2 (2007) 176. DOI:10.1038/nnano.2007.3810.1038/nnano.2007.38Search in Google Scholar PubMed
[36] R. Hagen, T. Bieringer: Adv. Mater. 13 (2001) 1805. DOI:10.1002/1521-4095(200112)13:23<1805::AID-ADMA1805>3.0.CO;2-V10.1002/1521-4095(200112)13:23<1805::AID-ADMA1805>3.0.CO;2-VSearch in Google Scholar
[37] T. Ubukata, M. Hara, K. Ichimura, T. Seki: Adv. Mater. 16 (2004) 220. DOI:10.1002/adma.20030553510.1002/adma.200305535Search in Google Scholar
[38] F.W. Schulze, H.J. Petrick, H.K. Cammenga, H. Klinge: Z. Phys. Chem. 107 (1977) 1. DOI:10.1524/zpch.1977.107.1.00110.1524/zpch.1977.107.1.001Search in Google Scholar
[39] J.M. Simmons, I. In, V.E. Campbell, T.J. Mark, F. Léonard, P. Gopalan, M.A. Eriksson: Phys. Rev. Lett. 98 (2007) 086802. DOI:10.1103/PhysRevLett.98.08680210.1103/PhysRevLett.98.086802Search in Google Scholar
[40] X. Zhang, Y. Feng, D. Huang, Y. Li, W. Feng: Carbon 48 (2010) 3236. DOI:10.1016/j.carbon.2009.08.03010.1016/j.carbon.2009.08.030Search in Google Scholar
[41] M. Kim, N.S. Safron, C. Huang, M.S. Arnold, P. Gopalan: Nano Lett. 12 (2012) 182. DOI:10.1021/nl200426g10.1021/nl200426gSearch in Google Scholar PubMed
[42] M. del Valle, R. Gutiérrez, C. Tejedor, G. Cuniberti: Nat. Nanotechnol. 2 (2007) 176. DOI:10.1038/nnano.2007.3810.1038/nnano.2007.38Search in Google Scholar PubMed
[43] R. Hagen, T. Bieringer: Adv. Mater. 13 (2001) 1805. DOI:10.1002/1521-4095(200112)13:23<1805::AID-ADMA1805>3.0.CO;2-V10.1002/1521-4095(200112)13:23<1805::AID-ADMA1805>3.0.CO;2-VSearch in Google Scholar
[44] T. Ubukata, M. Hara, K. Ichimura, T. Seki: Adv. Mater. 16 (2004) 220. DOI:10.1002/adma.20030553510.1002/adma.200305535Search in Google Scholar
[45] H.Y. Nie, M.J. Walzak, N.S. McIntyre: J. Phys. Chem. B 110 (2006) 21101. DOI:10.1021/jp055853y10.1021/jp055853ySearch in Google Scholar
[46] Y. Ito, A.A. Virkar, S. Mannsfeld, J.H. Oh, M. Toney, J. Locklin, Z.A. Bao: J. Am. Chem. Soc. 131 (2009) 9396. DOI:10.1021/ja902995710.1021/ja9029957Search in Google Scholar
[47] T. Suni, K. Henttinen, I. Suni, J. Mäkinen: J. Electrochem. Soc. 149 (2002) G348. DOI:10.1149/1.147720910.1149/1.1477209Search in Google Scholar
[48] M.E. McGovern, K.M.R. Kallury, M. Thompson: Langmuir 10 (1994) 3607. DOI:10.1021/la00022a03810.1021/la00022a038Search in Google Scholar
[49] M.H. Jung, H.S. Choi: Korean J. Chem. Eng. 26 (2009) 1778. DOI:10.1007/s11814-009-0020-210.1007/s11814-009-0020-2Search in Google Scholar
[50] F. Tielens, C. Gervais, J.F. Lambert, F. Mausi, D. Costa: Chem. Mater. 20 (2008) 3336. DOI:10.1021/cm800117310.1021/cm8001173Search in Google Scholar
[51] A.C. Ferrari: Phys. Rev. Lett. 97 (2006) 187401-1. DOI:10.1103/PhysRevLett.97.06040210.1103/PhysRevLett.97.060402Search in Google Scholar PubMed
[52] A.C. Ferrari: Solid State Commun. 143 (2007) 47. DOI:10.1016/j.ssc.2007.03.05210.1016/j.ssc.2007.03.052Search in Google Scholar
[53] D.M. Basko, S. Piscanec, A.C. Ferrari: Phys. Rev. B 80 (2009) 165413-1. DOI:10.1103/PhysRevB.80.16541310.1103/PhysRevB.80.165413Search in Google Scholar
[54] L.G. Cancado: Nano Lett. 11 (2011) 3190. DOI:10.1021/nl201432g10.1021/nl201432gSearch in Google Scholar PubMed
[55] A.C. Ferrari, J. Robertson: Phys. Rev. B 61 (2000) 14095. DOI:10.1103/PhysRevB.61.1409510.1103/PhysRevB.61.14095Search in Google Scholar
[56] M.M. Lucchese: Carbon 48 (2010) 1592. DOI:10.1016/j.carbon.2009.12.05710.1016/j.carbon.2009.12.057Search in Google Scholar
[57] S. Niyogi: Nano Lett. 10 (2010) 4061. DOI:10.1021/nl102112810.1021/nl1021128Search in Google Scholar PubMed
[58] F. Withers, S. Russo, M. Dubois, M.F. Craciun: Nanoscale Res. Lett.. 6 (2011) 526. DOI:10.1186/1556-276X-6-52610.1186/1556-276X-6-526Search in Google Scholar PubMed PubMed Central
[59] X.R. Wang, X.L. Li, L. Zhang, Y. Yoon, P.K. Weber, H.L. Wang, J. Guo, H.J. Dai: Science 324 (2009) 768. DOI:10.1126/science.116705310.1126/science.1167053Search in Google Scholar PubMed
[60] X. Dong, Y. Shi, W. Huang, P. Chen, L.J. Li: Adv. Mater. 22 (2010) 1649. DOI:10.1002/adma.20090364510.1002/adma.200903645Search in Google Scholar PubMed
© 2015 Carl Hanser Verlag GmbH & Co. KG
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences