Home Technology Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
Article
Licensed
Unlicensed Requires Authentication

Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics

  • Yousef Karimi EMAIL logo , Mohammad Zakeri , Mohammad Reza Rahimipour and Aida Faeghinia
Published/Copyright: October 27, 2021

Abstract

In this survey, cordierite glass-ceramic was prepared by melting in a platinum crucible at 1 580 °C. The effects of temperature and heating rate were studied on the nucleation and crystallization. Nucleation and crystallization temperatures were obtained by differential thermal analysis, scanning electron microscopy and X-ray diffraction. The results showed that the optimum nucleation and crystallization occurred at 810 and 1 150 °C, respectively. According to the X-ray diffraction patterns, cordierite, rutile, quartz and MgTi2O5 phases were obtained in the crystallized glassceramics. The maximum bending strength of 178 MPa was obtained after the chemical strengthening of the crystallized glass ceramic.


Mr. Yousef Karimi Material and Energy Research Center (MERC) Emam Khomeini Blvd Meshkin Dasht Karaj Iran Tel.: +98-26-36280040-7 Fax: +98-26-36201888

References

[1] R.R. Tummala: J. Am. Ceram. Soc. 74 (1991) 895. DOI:10.1111/j.1151-2916.1991.tb04320.x10.1111/j.1151-2916.1991.tb04320.xSearch in Google Scholar

[2] J. Banjuraizah, H. Mohamad, Z.A. Ahmad: J. Alloys Compd. 482 (2009) 429. DOI:10.1016/j.jallcom.2009.04.04410.1016/j.jallcom.2009.04.044Search in Google Scholar

[3] C. Oprea, C. Stan, E. Rotiu, C. Popescu: J. Therm. Anal. Calorim. 56 (1999) 611. DOI:10.1023/A:101017323200810.1023/A:1010173232008Search in Google Scholar

[4] A.A. El-Kheshen, M.F. Zawrah: Ceram. Int. 29 (2003) 251. DOI:10.1016/S0272-8842(02)00112-810.1016/S0272-8842(02)00112-8Search in Google Scholar

[5] N.J. Azın, M.A. Camerucci, A.L. Cavalieri: Ceram. Int. 31 (2006) 189. DOI:10.1016/j.ceramint.2004.04.00210.1016/j.ceramint.2004.04.002Search in Google Scholar

[6] D.T. Weaver, D.C. Van Aken, J.D. Smith: J. Mater. Sci. 39 (2004) 51. DOI:10.1023/B:JMSC.0000007727.10682.b610.1023/B:JMSC.0000007727.10682.b6Search in Google Scholar

[7] D.G. Grossman, R.W. Waldorn: US. Pat. No. 4,304,603 (1981).Search in Google Scholar

[8] F.H. Chung: J. Appl. Crystallogr. 7 (1974a) 513. DOI:10.1107/S002188987401033810.1107/S0021889874010338Search in Google Scholar

[9] X.J. Xu, C.S. Ray, D.E. Day: J. Am. Ceram. Soc. 74 (1991) 909. DOI:10.1111/j.1151-2916.1991.tb04321.x10.1111/j.1151-2916.1991.tb04321.xSearch in Google Scholar

[10] P. Alizadeh, V.K. Marghussian: J. Eur. Ceram. Soc. 20 (2000) 775. DOI:10.1016/S0955-2219(99)00135-110.1016/S0955-2219(99)00135-1Search in Google Scholar

[11] M. Rezvani, B. Eftekhari-Yekta, M. Solati-Hashjin, V.K. Marghussian: Ceram. Int. 31 (2005) 75. DOI:10.1016/j.ceramint.2004.03.03710.1016/j.ceramint.2004.03.037Search in Google Scholar

[12] S. Mollazadeh, B. Eftekhari Yekta, J. Javadpour, A. Yusefi, T.S. Jafarzadeh: J. Non-Cryst. Solids. 361 (2013) 70. DOI:10.1016/j.jnoncrysol.2012.10.00910.1016/j.jnoncrysol.2012.10.009Search in Google Scholar

[13] A. Faeghi Nia: Thermochim. Acta 564 (2013) 1. DOI:10.1016/j.tca.2013.04.01310.1016/j.tca.2013.04.013Search in Google Scholar

[14] R.W. Rice: J. Am. Ceram. Soc. 65 (1982) 106. DOI:10.1111/j.1151-2916.1982.tb10476.x10.1111/j.1151-2916.1982.tb10476.xSearch in Google Scholar

Received: 2014-07-27
Accepted: 2014-10-13
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111168/html
Scroll to top button