Startseite Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics

  • Yousef Karimi EMAIL logo , Mohammad Zakeri , Mohammad Reza Rahimipour und Aida Faeghinia
Veröffentlicht/Copyright: 27. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this survey, cordierite glass-ceramic was prepared by melting in a platinum crucible at 1 580 °C. The effects of temperature and heating rate were studied on the nucleation and crystallization. Nucleation and crystallization temperatures were obtained by differential thermal analysis, scanning electron microscopy and X-ray diffraction. The results showed that the optimum nucleation and crystallization occurred at 810 and 1 150 °C, respectively. According to the X-ray diffraction patterns, cordierite, rutile, quartz and MgTi2O5 phases were obtained in the crystallized glassceramics. The maximum bending strength of 178 MPa was obtained after the chemical strengthening of the crystallized glass ceramic.


Mr. Yousef Karimi Material and Energy Research Center (MERC) Emam Khomeini Blvd Meshkin Dasht Karaj Iran Tel.: +98-26-36280040-7 Fax: +98-26-36201888

References

[1] R.R. Tummala: J. Am. Ceram. Soc. 74 (1991) 895. DOI:10.1111/j.1151-2916.1991.tb04320.x10.1111/j.1151-2916.1991.tb04320.xSuche in Google Scholar

[2] J. Banjuraizah, H. Mohamad, Z.A. Ahmad: J. Alloys Compd. 482 (2009) 429. DOI:10.1016/j.jallcom.2009.04.04410.1016/j.jallcom.2009.04.044Suche in Google Scholar

[3] C. Oprea, C. Stan, E. Rotiu, C. Popescu: J. Therm. Anal. Calorim. 56 (1999) 611. DOI:10.1023/A:101017323200810.1023/A:1010173232008Suche in Google Scholar

[4] A.A. El-Kheshen, M.F. Zawrah: Ceram. Int. 29 (2003) 251. DOI:10.1016/S0272-8842(02)00112-810.1016/S0272-8842(02)00112-8Suche in Google Scholar

[5] N.J. Azın, M.A. Camerucci, A.L. Cavalieri: Ceram. Int. 31 (2006) 189. DOI:10.1016/j.ceramint.2004.04.00210.1016/j.ceramint.2004.04.002Suche in Google Scholar

[6] D.T. Weaver, D.C. Van Aken, J.D. Smith: J. Mater. Sci. 39 (2004) 51. DOI:10.1023/B:JMSC.0000007727.10682.b610.1023/B:JMSC.0000007727.10682.b6Suche in Google Scholar

[7] D.G. Grossman, R.W. Waldorn: US. Pat. No. 4,304,603 (1981).Suche in Google Scholar

[8] F.H. Chung: J. Appl. Crystallogr. 7 (1974a) 513. DOI:10.1107/S002188987401033810.1107/S0021889874010338Suche in Google Scholar

[9] X.J. Xu, C.S. Ray, D.E. Day: J. Am. Ceram. Soc. 74 (1991) 909. DOI:10.1111/j.1151-2916.1991.tb04321.x10.1111/j.1151-2916.1991.tb04321.xSuche in Google Scholar

[10] P. Alizadeh, V.K. Marghussian: J. Eur. Ceram. Soc. 20 (2000) 775. DOI:10.1016/S0955-2219(99)00135-110.1016/S0955-2219(99)00135-1Suche in Google Scholar

[11] M. Rezvani, B. Eftekhari-Yekta, M. Solati-Hashjin, V.K. Marghussian: Ceram. Int. 31 (2005) 75. DOI:10.1016/j.ceramint.2004.03.03710.1016/j.ceramint.2004.03.037Suche in Google Scholar

[12] S. Mollazadeh, B. Eftekhari Yekta, J. Javadpour, A. Yusefi, T.S. Jafarzadeh: J. Non-Cryst. Solids. 361 (2013) 70. DOI:10.1016/j.jnoncrysol.2012.10.00910.1016/j.jnoncrysol.2012.10.009Suche in Google Scholar

[13] A. Faeghi Nia: Thermochim. Acta 564 (2013) 1. DOI:10.1016/j.tca.2013.04.01310.1016/j.tca.2013.04.013Suche in Google Scholar

[14] R.W. Rice: J. Am. Ceram. Soc. 65 (1982) 106. DOI:10.1111/j.1151-2916.1982.tb10476.x10.1111/j.1151-2916.1982.tb10476.xSuche in Google Scholar

Received: 2014-07-27
Accepted: 2014-10-13
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111168/html
Button zum nach oben scrollen